884 resultados para Laser refractive surgery
Resumo:
An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.
Resumo:
As shown recently, a long telecommunication fibre may be treated as a natural one-dimensional random system, where lasing is possible due to a combination of random distributed feedback via Rayleigh scattering by natural refractive index inhomogeneities and distributed amplification through the Raman effect. Here we present a new type of a random fibre laser with a narrow (∼1 nm) spectrum tunable over a broad wavelength range (1535-1570 nm) with a uniquely flat (∼0.1 dB) and high (>2 W) output power and prominent (>40 %) differential efficiency, which outperforms traditional fibre lasers of the same category, e.g. a conventional Raman laser with a linear cavity formed in the same fibre by adding point reflectors. Analytical model is proposed that explains quantitatively the higher efficiency and the flatter tuning curve of the random fiber laser compared to conventional one. The other important features of the random fibre laser like "modeless" spectrum of specific shape and corresponding intensity fluctuations as well as the techniques of controlling its output characteristics are discussed. Outstanding characteristics defined by new underlying physics and the simplicity of the scheme implemented in standard telecom fibre make the demonstrated tunable random fibre laser a very attractive light source both for fundamental science and practical applications such as optical communication, sensing and secure transmission. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
During the last decade, microfabrication of photonic devices by means of intense femtosecond (fs) laser pulses has emerged as a novel technology. A common requirement for the production of these devices is that the refractive index modification pitch size should be smaller than the inscribing wavelength. This can be achieved by making use of the nonlinear propagation of intense fs laser pulses. Nonlinear propagation of intense fs laser pulses is an extremely complicated phenomenon featuring complex multiscale spatiotemporal dynamics of the laser pulses. We have utilized a principal approach based on finite difference time domain (FDTD) modeling of the full set of Maxwell's equations coupled to the conventional Drude model for generated plasma. Nonlinear effects are included, such as self-phase modulation and multiphoton absorption. Such an approach resolves most problems related to the inscription of subwavelength structures, when the paraxial approximation is not applicable to correctly describe the creation of and scattering on the structures. In a representative simulation of the inscription process, the signature of degenerate four wave mixing has been found. © 2012 Optical Society of America.
Resumo:
A liquid core waveguide as a refractometer is proposed. Microtunnels were created in standard optical fiber using tightly focused femtoscond laser inscription and chemical etching. A 1.2(h)×l25(d) ×500(1) μm micro-slot engraved along a fiber Bragg grating (FBG) was used to construct liquid core waveguide by filling the slot with index matching oils. The device was used to measure refractive index and sensitivity up to 10-6/pm was obtained. © 2007 Optical Society of America.
Resumo:
Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.
Resumo:
The femtosecond laser modification of refractive index in amorphous Al2O3:Nd thin film prepared by rf magnetron sputtering is investigated. Modifications of the refractive index in a sample with a single Al2O3:Nd layer and in a sample composed of the Al2O3:Nd layer and SiO2 layer on the top were compared. Advantages arising from addition of the SiO2 layer are shown. The film was patterned in order to form an active waveguide. Waveguide loss and mode composition were investigated experimentally and theoretically. Spectrum and kinetics of luminescence in the region of 1.06 μm were measured.
Resumo:
We have observed unusual asymmetrical refractive index change as a result of femtosecond laser inscription in a crystal without center of inversion. Profile of the refractive index change exhibits sign turn within the domain of femtosecond pulse exposure. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
Fabrication and characterization of a UVinscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h) × 125 μm(w) × 1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off. © 2012 Optical Society of America.
Resumo:
Purpose: To ascertain the agreement level between intra-operative refraction using a prototype surgical Hartmann-Shack aberrometer and subjective refraction a month later. Methods: Fifty-four consecutive patients had their pseudophakic refractive measured with the aberrometer intra-operatively at the end of their cataract surgery. A masked optometrist performed subjective refraction 4 weeks later. The two sets of data were then analysed for correlation. Results: The mean spherical equivalent was −0.14 ± 0.37 D (Range: −1.41 to +1.72 D) with the prototype aberrometer and −0.34 ± 0.32 (−1.64 to +1.88 D) with subjective refraction. The measurements positively correlated to a very high degree (r =+0.81, p < 0.01). In 84.3% of cases the two measurements were within 0.50D of each other. Conclusion: The aberrometer can verify the aimed refractive status of the eye intraoperatively to avoid a refractive surprise. The aberrometer is a useful tool for real time assessment of the ocular refractive status.
Resumo:
We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We report that the main photosensitive mechanism of poly(methyl methacrylate)-based optical fiber Bragg grating (POFBG) under ultraviolet laser micromachining is a complex process of both photodegradation and negative thermo-optic effect. We found experimentally the unique characteristics of Bragg resonance splitting and reunion during the laser micromachining process providing the evidence of photodegradation, while the mean refractive index change of POFBG was measured to be negative confirming further photodegradation of polymer fiber. The thermal-induced refractive index change of POFBG was also observed by recording the Bragg wavelength shift. Furthermore, the dynamic thermal response of the micromachined-POFBG was demonstrated under constant humidity, showing a linear and negative response of around -47.1 pm/°C.
Resumo:
We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs), and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask, and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2 μm Tm-doped CW and mode locked fiber lasers, respectively.
Resumo:
Researchers conducted investigations to demonstrate the advantages of random distributed feedback fiber laser. Random lasers had advantages, such as simple technology that did not require a precise microcavity and low production cost. The properties of their output radiation were special in comparison to those of conventional lasers and they were characterized by complex features in the spatial, spectral, and time domains. The researchers demonstrated a new type of one-dimensional laser with random distributed feedback based on Rayleigh scattering (RS) that was presented in any transparent glass medium due to natural inhomogeneities of refractive index. The cylindrical fiber waveguide geometry provided transverse confinement, while the cavity was open in the longitudinal direction and did not include any regular point-action reflectors.
Resumo:
Point-by-point fibre grating fabrication by femtosecond laser pulses requires tight focusing of the pulses into the core of the fibre. This condition is not easily satisfied in photonic crystal fibres (PCFs) due to the pulse scattering by the holes. In this letter, we present a numerical model of propagation of tightly focused laser beam through PCF in a typical experimental setup. We investigate impact of the numerical aperture of the beam and hole refractive index on the beam scattering and identify optimal conditions for relating the findings to the requirements of grating fabrication. The results explain and quantify recent experimental grating inscription techniques and are indicative of birefringence observed in long-period gratings written by femtosecond laser pulses. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work evaluated the capabilities of inductively coupled plasma mass spectrometry (ICP-MS) for elemental analysis of trace evidence. A method was developed and validated for the analysis of glass by ICP-MS. A database of ∼700 glass samples was analyzed for elemental composition by external calibration with internal standardization (EC) ICP-MS and refractive index (RI). Additional methods were developed during the course of this work using two well-known techniques, isotope dilution (ID) and laser ablation (LA). These methods were then applied to analyze subsets of this database. ICP-MS data from 161 containers, 45 headlamps, and 458 float glasses (among them at least 143 vehicle windows) are presented and summarized. Data from the analysis of ∼190 glass samples collected from a single glass manufacturing facility over a period of 53 months at different intervals, including 97 samples collected in a 24 hour period are presented. Data from the analysis of 125 glass samples representing 36 manufacturing plants in the U.S. are also presented. ^ The three methods used, ICP-MS, ID-ICP-MS and LA-ICP-MS, were shown to be excellent methods for distinguishing between different glass samples. The database provided information about the variability of refractive index and elemental composition in glasses from diverse population types. Using the proposed methods, the database supports the hypothesis that different glass samples have different elemental profiles and a comparison between fragments from the same source results in indistinguishable profiles. ^