999 resultados para Laser damage
Resumo:
Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO2 thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 degrees C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the [1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Copyright © 2014 Entomological Society of America.
Resumo:
Thin films consisting of 3 or 4 Sb and Ge alternating layers are irradiated with single nanosecond laser pulses (12 ns, 193 nm). Real time reflectivity (RTR) measurements are performed during irradiation, and Rutherford backscattering spectrometry (RBS) is used to obtain the concentration depth profiles before and after irradiation. Interdiffusion of the elements takes place at the layer interfaces within the liquid phase. The reflectivity transients allow to determine the laser energy thresholds both to induce and to saturate the process being both thresholds dependent on the multilayer configuration. It is found that the energy threshold to initiate the process is lower when Sb is at the surface while the saturation is reached at lower energy densities in those configurations with thinner layers.
Resumo:
Abstract Introduction: Exhaustive and/or unaccustomed exercise, mainly those involving eccentric muscle actions, induces temporary muscle damage, evidenced by Delayed Onset Muscle Soreness. Different strategies to recover the signs and symptoms of this myogenic condition have been studied by researchers, as a result a significant number of articles on this issue have been published. Purpose: A systematic review was conducted to assess the evidence of the physiotherapeutic interventions of exercise-induced muscle damage. Methods: The electronic data bases were searched, including MEDLINE (1996-2011), CINHAL (1982- 2011), EMBASE (1988-2011), PEDro (1950-2011), and SPORTDiscus (1985-2011). Systematic review was limited to randomized control trials (RCTs) studies, written in English or Portuguese, which included physiotherapeutic interventions, namely massage, cryotherapy, stretching and low-intensity exercise, on adult human subjects (18-60 years old) of either gender. Studies were excluded when the intervention could not be assessed independently. The methodological quality of RCTs was independently assessed with the PEDro Scale by three reviewers. Results: Thirty-three studies were included in the systematic review; eight analyzed the effects of the massage, ten analyzed the effects of the cryotherapy, eight the effect of stretching and seventeen focused low-intensity exercise intervention. The results suggest that massage is the most effective intervention and that there is inconclusive evidence to support the use of cryotherapy; whereas the other conventional, namely stretching and low-intensity exercise, there is no evidence to prove their efficacy. Conclusion: The results allow the conclusion that massage is the physiotherapeutic intervention that demonstrated to be the most effective in the relief of symptoms and signs of exercise-induced muscle damage, as a result, massage should still be used in the muscular recovery after sports activities.
Resumo:
O elevado nível de integração e miniaturização dos componentes existente nos dias de hoje, criam novos desafios na concepção de circuitos impressos. Neste trabalho são apresentados métodos para interligação entre componentes, em circuitos impressos com elevado número de ligações, recorrendo a tecnologia laser. Foi desenvolvida uma máquina CNC de três eixos, para posicionamento de um laser, mantendo o suporte para as operações tradicionais com ferramentas. O sistema foi concebido para a produção de circuitos impressos por laser (fresagem e furação), no entanto a compatibilidade com outras ferramentas e acessórios presentes, possibilitam a execução de outros processos no mesmo equipamento, como remoção da máscara de solda, soldadura de componentes, colocação de pasta de solda, gravação, inspecção visual, entre outros. Com este trabalho, demonstra-se a importância dos circuitos impressos na evolução da electrónica, assim como se apresentam soluções para a sua concepção.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization-sensitive laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 degrees and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low-frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log-normal particle size distribution. (C) 1996 American Institute of Physics.
Resumo:
Agências Financiadoras: Fundação para a Ciência e a Tecnologia - PTDC/FIS/102127/2008 e PTDC/FIS/102127/2008 e SFRH/BPD/78871/2011; Spanish Ministerio de Ciencia e Innovacion - FUNCOAT-CSD2008-00023-CONSOLIDER; Instituto Superior Técnico;
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.
Resumo:
In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.
Resumo:
To counteract and prevent the deleterious effect of free radicals the living organisms have developed complex endogenous and exogenous antioxidant systems. Several analytical methodologies have been proposed in order to quantify antioxidants in food, beverages and biological fluids. This paper revises the electroanalytical approaches developed for the assessment of the total or individual antioxidant capacity. Four electrochemical sensing approaches have been identified, based on the direct electrochemical detection of antioxidant at bare or chemically modified electrodes, and using enzymatic and DNA-based biosensors.
Resumo:
Background: Physiotherapy has a very important role in the maintenance of the integumentary system integrity. There is very few evidence in humans. Nevertheless, there are some studies about tissue regeneration using low-level laser therapy (LLLT). Aim: To analyze the effectiveness of LLLT on scar tissue. Methods: Seventeen volunteers were stratified by age of their scars, and then randomly assigned to an experimental group (EG) — n = 9 – and a placebo group (PG) – n = 8. Fifteen sessions were conducted to both the groups thrice a week. However, in the PG, the laser device was switched off. Scars’ thickness, length, width, macroscopic aspect, pain threshold, pain perception, and itching were measured. Results: After 5 weeks, there were no statistically significant differences in any variable between both the groups. However, analyzing independently each group, EG showed a significant improvement in macroscopic aspect (p = 0.003) using LLLT. Taking into account the scars’ age, LLLT showed a tendency to decrease older scars’ thickness in EG. Conclusion: The intervention with LLLT appears to have a positive effect on the macroscopic scars’ appearance, and on old scars’ thickness, in the studied sample. However, it cannot be said for sure that LLLT has influence on scar tissue.
Resumo:
Retinal imaging with a confocal scaning laser Ophthalmoscope (cSLO) involves scanning a small laser beam over the retina and constructing an image from the reflected light. By applying the confocal principle, tomographic images can be produced by measuring a sequence of slices at different depths. However, the thickness of such slices, when compared with the retinal thickness, is too large to give useful 3D retinal images, if no processing is done. In this work, a prototype cSLO was modified in terms hardware and software to give the ability of doing the tomographic measurements with the maximum theoretical axial resolution possible. A model eye was built to test the performance of the system. A novel algorithm has been developed which fits a double Gaussian curve to the axial intensity profiles generated from a stack of images slices. The underlying assumption is that the laser light has mainly been reflected by two structures in the retina, the internal limiting membrane and the retinal pigment epithelium. From the fitted curve topographic images and novel thickness images of the retina can be generated. Deconvolution algorithms have also been developed to improve the axial resolution of the system, using a theoretically predicted cSLO point spread function. The technique was evaluated using measurements made on a model eye, four normal eyes and seven eyes containing retinal pathology. The reproducibility, accuracy and physiological measurements obtained, were compared with available published data, and showed good agreement. The difference in the measurements when using a double rather than a single Gaussian model was also analysed.