596 resultados para Lagrange multipliers
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Comunicação - FAAC
Resumo:
The tourism spending like other activities has direct and secondary effects on the economy, and presents complex interaction with other activities deserving a special treatment for measuring its contribution to the global result of production and consumption. In this paper, it is used the Money Generation Model to measure the global economic impact of tourism sales in Ouro Preto, this method is not so limited by the data and it is able to produce good approximations to reality. It was not possible to adopt the WTO methodology due to data limitation. The results revealed the real importance of tourism for Ouro Preto, representing up to 10.4% of GDP in 2002, up to 21.8% of tax revenues in 2004, and approximately 11% of the region’s population in 2002 was related to tourism sales. Some actions can be outlined from these results in order to illustrate the current economic reality of the tourism in Ouro Preto. It is also possible to improve the tourist planning accomplished by the local City Hall in a coherent way with the economic results generated by the tourism.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Física - IFT
Resumo:
1. Distance sampling is a widely used technique for estimating the size or density of biological populations. Many distance sampling designs and most analyses use the software Distance. 2. We briefly review distance sampling and its assumptions, outline the history, structure and capabilities of Distance, and provide hints on its use. 3. Good survey design is a crucial prerequisite for obtaining reliable results. Distance has a survey design engine, with a built-in geographic information system, that allows properties of different proposed designs to be examined via simulation, and survey plans to be generated. 4. A first step in analysis of distance sampling data is modeling the probability of detection. Distance contains three increasingly sophisticated analysis engines for this: conventional distance sampling, which models detection probability as a function of distance from the transect and assumes all objects at zero distance are detected; multiple-covariate distance sampling, which allows covariates in addition to distance; and mark–recapture distance sampling, which relaxes the assumption of certain detection at zero distance. 5. All three engines allow estimation of density or abundance, stratified if required, with associated measures of precision calculated either analytically or via the bootstrap. 6. Advanced analysis topics covered include the use of multipliers to allow analysis of indirect surveys (such as dung or nest surveys), the density surface modeling analysis engine for spatial and habitat-modeling, and information about accessing the analysis engines directly from other software. 7. Synthesis and applications. Distance sampling is a key method for producing abundance and density estimates in challenging field conditions. The theory underlying the methods continues to expand to cope with realistic estimation situations. In step with theoretical developments, state-of- the-art software that implements these methods is described that makes the methods accessible to practicing ecologists.
Resumo:
Introduction C-reactive protein (CRP) levels rise during inflammatory processes and have been ordered for rheumatic disease follow-up since the 1950s. The number of tests ordered in the emergency setting has increased, but without evident improvement in medical care quality. Objective To determine the pattern of CRP determinations in the emergency department (ED) of a university hospital in Sao Paulo, Brazil, and to evaluate the effect of an intervention with staff and students about the best use of the test in the ED. Methods Data regarding CRP testing requests, related diagnoses and the number of monthly consultations in the hospital ED were analysed before and after the intervention. Because of an increase in CRP measurement requests from 2007 to 2009, the author started discussing the role of CRP determinations in the medical decision-making process in early 2010. Staff and faculty members openly discussed the pattern of requests in the hospital and related current medical literature. During 2010, the medical staff worked as multipliers to change the behaviour of new students and residents. The results of the first 4 months after the intervention were presented at another general meeting in July 2010. Results From 2007 to 2009, there were 11 786 CRP measurement requests with a clear exponential trend. After the intervention, during the calendar year 2010, there was a 48% reduction in adjusted annual CRP requests. Pneumonia, fever and urinary tract infections were the most common reasons for CRP requests. Discussion Inexpensive, well-directed, interactive educational interventions may affect professional behaviour and curb rates of laboratory tests.
Resumo:
The present paper aims at contributing to a discussion, opened by several authors, on the proper equation of motion that governs the vertical collapse of buildings. The most striking and tragic example is that of the World Trade Center Twin Towers, in New York City, about 10 years ago. This is a very complex problem and, besides dynamics, the analysis involves several areas of knowledge in mechanics, such as structural engineering, materials sciences, and thermodynamics, among others. Therefore, the goal of this work is far from claiming to deal with the problem in its completeness, leaving aside discussions about the modeling of the resistive load to collapse, for example. However, the following analysis, restricted to the study of motion, shows that the problem in question holds great similarity to the classic falling-chain problem, very much addressed in a number of different versions as the pioneering one, by von Buquoy or the one by Cayley. Following previous works, a simple single-degree-of-freedom model was readdressed and conceptually discussed. The form of Lagrange's equation, which leads to a proper equation of motion for the collapsing building, is a general and extended dissipative form, which is proper for systems with mass varying explicitly with position. The additional dissipative generalized force term, which was present in the extended form of the Lagrange equation, was shown to be derivable from a Rayleigh-like energy function. DOI: 10.1061/(ASCE)EM.1943-7889.0000453. (C) 2012 American Society of Civil Engineers.
Resumo:
The use of antiretroviral therapy has proven to be remarkably effective in controlling the progression of human immunodeficiency virus (HIV) infection and prolonging patient's survival. Therapy however may fail and therefore these benefits can be compromised by the emergence of HIV strains that are resistant to the therapy. In view of these facts, the question of finding the reason for which drug-resistant strains emerge during therapy has become a worldwide problem of great interest. This paper presents a deterministic HIV-1 model to examine the mechanisms underlying the emergence of drug-resistance during therapy. The aim of this study is to determine whether, and how fast, antiretroviral therapy may determine the emergence of drug resistance by calculating the basic reproductive numbers. The existence, feasibility and local stability of the equilibriums are also analyzed. By performing numerical simulations we show that Hopf bifurcation may occur. The model suggests that the individuals with drug-resistant infection may play an important role in the epidemic of HIV. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The purpose of this study is to present a position based tetrahedral finite element method of any order to accurately predict the mechanical behavior of solids constituted by functionally graded elastic materials and subjected to large displacements. The application of high-order elements makes it possible to overcome the volumetric and shear locking that appears in usual homogeneous isotropic situations or even in non-homogeneous cases developing small or large displacements. The use of parallel processing to improve the computational efficiency, allows employing high-order elements instead of low-order ones with reduced integration techniques or strain enhancements. The Green-Lagrange strain is adopted and the constitutive relation is the functionally graded Saint Venant-Kirchhoff law. The equilibrium is achieved by the minimum total potential energy principle. Examples of large displacement problems are presented and results confirm the locking free behavior of high-order elements for non-homogeneous materials. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.
Resumo:
A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.