916 resultados para LAMELLAR MORPHOLOGY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystalline morphologies of spin-coated poly(L-lactic acid) (PLLA) thin films under different conditions are investigated mainly with atomic force microscopy (AFM) technique. When PLLA concentration in chloroform is varied from 0.01 to 1% gradually, disordered structure, rod-shape and larger spheres aggregates are observed in thin films subsequently. Under different annealing temperature, such as at 78, 102, 122 degrees C, respectively, we can find most rod-like crystalline aggregates. Interestingly, we observed that nucleation sites locate at the edge of the holes at the original crystalline stage. Then, these holes developed to form chrysanthemum-like and rods subsequently with annealing time meanwhile the size and the shape of crystalline aggregate are changed. In addition. effect of substrate and solvent on morphology is also discussed. On the other hand, the possible mechanism of crystalline morphology evolution is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent fractionation and differential scanning calorimetry (DSC) results show that high impact polypropylene (hiPP) produced by a multistage polymerization process consists of PP homopolymer, amorphous ethylene-propylene random copolymer (EPR), and semicrystalline ethylene-propylene copolymer. For the original hiPP particles obtained right after polymerization, direct transmission electron microscopy (TEM) observation reveals a fairly homogeneous morphology of the ethylene-propylene copolymer (EP) phase regions inside, while the polyethylene-rich interfacial layer observed between the EP region and the iPP matrix supports that EP copolymers form on the subglobule surface of the original iPP particles. Compared with that in original hiPP particles, the dispersed EP domains in pellets have much smaller average size and relatively uniform size distribution, indicating homogenization of the EP domains in the hiPP by melt-compounding. Upon heat-treatment, phase reorganization occurs in hiPP, and the dispersed EP domains can form a multiple-layered core-shell structure, comprising a polyethylene-rich core, an EPR intermediate layer and an outer shell formed by EP block copolymer, which accounts to some extent for the good toughness-rigidity balance of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chi N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional Au nanorod and An nanoparticle nanostructured materials were prepared by layer-by-layer self-assembly. The plasmonic properties of the An nanorod and An nanoparticle self-assembled nanostructured materials (abbreviated as AuNR and AuNP SANMs) are tunable by the controlled self-assenibly process. The effect of thermal annealing at 180 and 500 degrees C to the morphologies, plasmonic properties and surface-enhanced Raman scattering (SERS) responses of these SANMs were investigated. According to the experimental results, these properties correlate with the structure of the SANMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of head-to-tail poly(3-hexylthiophene)s have been grown through the method of isothermal solution crystallization. Electron diffraction in combination with powder X-ray diffraction revealed the crystal structure, a = 1.52 nm, b = 3.36 nm, c = 1.56 nm and alpha = beta = gamma = 90 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed an approach, i.e. solvent-assist crystallization (SAC), for growing high quality single crystals of head-to-tail regio-regular poly(3-butylthiophene) (P3BT). By means of atomic force microscopy, electron diffraction and X-ray diffraction, we found that P3BT macromolecules formed lamella single crystals through gradient crystallization, and in the single crystals, molecules packed normal to the lamella with extended-chain conformation with alkyl side chains in the growth front during crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied, both experimentally and theoretically, the aggregation morphology of the ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property. Experimental results showed that the micellar morphology changed from spheres to rods and then to vesicles by changing the common solvent from N-N-dimethylformamide (DMF) to dioxane and then to tetrahydrofuran (THF). These controllable aggregates were also obtained by Monte Carlo simulation. The simulative results showed that the solvent property is a key factor that determines the copolymer aggregation morphology. The morphology changed from spheres to rods and then to vesicles by increasing the solvent solubility, corresponding to the change of stretched of the copolymer chains in the micellar cores. This result is in good agreement with the experimental one. Moreover, the simulative results revealed that the end-to-end distant of the ABA triblock copolymer in the vesicle was larger than that in the spheres and rods, indicating that the copolymer chains were more stretched in vesicles than in the spheres and rods. Furthermore, we gave the distribution of the fraction of the chain number with the end-to-end distance. The results indicated that the amount of folded chains is almost the same as that of stretched chains in the vesicle. Although most chains were folded, stretched chains could be found in the rod and sphere micelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lamellar platelets of triblock copolymers grown in dilute toluene solution with trace amounts of water can be used as templates for tethered diblock copolymer chain preparation and analysis. Polystyrene-bpoly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two different block fractions were used as model templates to generate tethered P2VP-b-PS chains on the platelet basal surfaces. In toluene solution the aggregation states of PS-b-P2VP-b-PEO were sensitive to the water content in the solution. For toluene with trace amount of water, spherical micelles were formed in the early stage and large square platelets would gradually grow from these spherical micelles. The hydrogen bonding between water and EO units was responsible for the formation of micelles and subsequent square platelets in the solution. Tethered P2VP-b-PS chains on basal surface of PEO platelets could be regarded as diblock copolymer brushes and the density (or: 0.086-0.36) and height (d: 3.5-14.3 nm) of these tethered chains could be easily modulated by changing the crystallization condition and/ or the molecular weight of each block. The tethered P2VP-b-PS chains were responsive to different solvent vapor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT/PSS) films with ring-, arrow-, and bubble-like microstructures have been electrochemically generated simply by a one-step cyclic voltammetry in an aqueous media. Influences of applied potentials and surfactant/dopant-PSS on morphology of the resulting film were investigated, and a gas bubble template mechanism has been proposed. The result confirmed a well-doping of PSS in the PEDOT film. Electrochemical property and conductivity of the micro-structured PEDOT/PSS film were investigated further. Similar preparation with potential applications in fabrication of microdevices and micro-sensors can be extended to other micro-structured conducting polymers.