972 resultados para Killer yeasts
Resumo:
Introduction Hospital infections caused by Candida spp. are a leading cause of morbidity and mortality in hospitalized patients, particularly those that are critically ill or immunocompromised. In this study, the distribution of Candida species in isolates from the University Hospital of the Federal University at Grande Dourados and their in vitro susceptibility to antifungal drugs were analyzed. Methods Yeasts were phenotypically identified using classical methodologies. Antifungal susceptibility tests to amphotericin B and fluconazole were performed using the broth microdilution technique. Results A total of 50 Candida isolates were obtained from hospitalized patients during the study period. We analyzed yeast isolates from urine (n=31; 62%), blood (n=12; 24%), and tracheal secretions (n=7; 14%). The following Candida species were identified: C. tropicalis (n=21; 42%), C. albicans (n=18; 36%), C. glabrata (n=10; 20%), and C. krusei (n=1; 2%). Antifungal susceptibility tests demonstrated that C. albicans was susceptible to both antifungal agents. However, 31.2% of the non-C. albicans Candida isolates displayed dose-dependent susceptibility to fluconazole, and 3.1% were resistant to amphotericin B. Conclusions In contrast to previous reports, our results indicated that C. tropicalis was the most commonly isolated yeast species among the hospital patients. The predominance of non-C. albicans Candida infections confirms the importance of species-level identification for implementing appropriate antifungal therapies.
Resumo:
Introduction The aim of this study was to conduct an epidemiological study comparing the genetic similarity of yeasts isolated from blood cultures. Methods Random amplification of polymorphic DNA (RAPD) techniques were used for the Candida samples obtained from patients at the Hospital Universitário da Universidade Federal do Mato Grosso do Sul (HU/UFMS) in Campo Grande, state of Mato Grosso do Sul, Brazil, from 1998-2000. Results The most frequently isolated species was Candida albicans (45.8%). DNA amplification from genomic yeast isolates indicated a genetic similarity of over 90%. Conclusions The RAPD profiles obtained were able to differentiate between the isolated Candida species, thereby suggesting that the method might be useful in epidemiological studies.
Resumo:
Introduction: There are more than 300,000 extractors using the babaçu coconut as a source of income in the States of Maranhão, Pará, Tocantins and Piauí, and this activity is associated with fungal infections. The objective of this study was to examine the occurrence of emergent fungi in the conjunctiva, nails and surface and subcutaneous injuries of female coconut breakers in Esperantinópolis, Maranhão. Additionally, soil samples and palm structures were collected. Methods: The obtained samples were cultured in Petri dishes containing potato-dextrose-agar and chloramphenicol. The etiological agent was confirmed by a direct mycological exam and growth in culture. Results: In total, 150 domiciles were visited, and samples were collected from 80 patients. From the ground, the most frequently isolated fungus was Aspergillus niger (53. 8%). the most frequently detected fungus in babaçu coconut was Aspergillus niger (66.7%). Conjunctival fungal growth occurred in 76.3% of the women. The ocular fungal microbiota consisted of filamentous fungi (80.6%), and yeasts were present in 19.4% of cases. Onychomycosis was diagnosed in 44% (11/25) of the women. Conclusions: The identification of the genera Neosartorya, Rhizopus and Curvularia in onychomycoses shows that emergent filamentous fungi can be isolated. Aspergillus sp., Penicillium sp. and Scedosporium sp. were the predominant genera found in the babaçu coconut. From ocular conjunctiva, Candida spp. were the most prevalent species isolated, and Fusarium sp. was present only in one woman. The nearly permanent exposure of coconut breakers to the external environment and to the soil is most likely the reason for the existence of a mycotic flora and fungal infections, varying according to the individual's practices and occupation.
Resumo:
^a Introduction Interleukin (IL)-18 is a well-known major proinflammatory cytokine with broad biological effects. The major immunomodulatory functions of IL-18 include enhancing T cell and natural killer cell cytotoxicity. Serum levels of this cytokine were shown to increase in chronic hepatitis C patients compared to non-infected healthy people. An association between IL-18 gene promoter polymorphisms and pegylated interferon (PEG-IFN) and ribavirin treatment outcomes has been reported for individuals with chronic hepatitis C virus genotype 1 (HCV-1). In this study, HCV genotype 4 (HCV-4) patients were assessed for IL-18 gene polymorphisms and treatment outcomes or severity of liver disease because data concerning the impact of IL-18 gene polymorphisms on patients with HCV-4 infections are limited. Methods This study included 123 chronic HCV-4 Egyptian patients and 123 apparently healthy volunteer blood donors who served as a control group. HCV genotyping was performed using the line probe assay. IL-18 genotyping was performed using the TaqMan Real-Time PCR method in all 246 patient and control samples. Results In our study, all patients had HCV-4. IL-18 gene single nucleotide polymorphism (SNP) (-607C/A) genotype distributions and allele frequencies did not differ between HCV patients and normal healthy subjects or between patient groups when compared according to the therapeutic response. Moreover, the presence of an IL-18 SNP was not associated with histological disease severity. We conclude that the presence of the IL-18 SNP rs1946518 does not affect the outcome of chronic HCV-4 treatment in Egyptian patients. Conclusions The IL-18 SNP rs1946518 does not affect response to treatment in chronic HCV-4 patients.
Resumo:
Since the last two decades mass spectrometry (MS) has been applied to analyse the chemical cellular components of microorganisms, providing rapid and discriminatory proteomic profiles for their species identification and, in some cases, subtyping. The application of MS for the microbial diagnosis is currently well-established. The remarkable reproducibility and objectivity of this method is based on the measurement of constantly expressed and highly abundant proteins, mainly important conservative ribosomal proteins, which are used as markers to generate a cellular fingerprint. Mass spectrometry based on matrix-assisted laser desorption ionization-time of flight (MALDI- TOF) technique has been an important tool for the microbial diagnostic. However, some technical limitation concerning both MALDI-TOF and its used protocols for sample preparation have fostered the research of new mass spectrometry systems (e.g. LC MS/MS). LC MS/MS is able to generate online mass spectra of specific ions with further online sequencing of these ions, which include both specific proteins and DNA fragments. In this work a set of data for yeasts and filamentous fungi diagnostic obtained through an international collaboration project involving partners from Argentina, Brazil, Chile and Portugal will be presented and discussed.
Resumo:
[Excerpt] Food mycology has expanded beyond recognition over the past 10 years. The field of study is now considered in its own right rather than an offshoot of food microbiology. I am discussing here the subject in terms of biodeterioration rather than the use of fungi to produce food. Also, the special issue (SI) considers filamentous fungi (ff) but not yeasts, although these are very important. (...)
Resumo:
Endopleura uchi (Huber) Cuatrec. is an Amazon species traditionally used as treatment for inflammations and female disorders. Bergenin was isolated from ethyl acetate fraction of bark of E. uchi by using column chromatography over sephadex LH-20 and then silica gel 60 flash. Its structure was identified on the basis of its NMR spectra. The antimicrobial activity of bergenin and fractions of methanol extract of E. uchi were evaluated against ATCC microorganisms (Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans, C. guilliermondii, Aspergillus flavus, A. nidulans). Clinically isolated strains of all of these microorganisms, along with C. tropicalis, A. niger, Shigella sonnei, Serratia marcenses and Klebsiella pneumoniae were also evaluated. The growth inhibition caused by bergenin, extracts and fractions of E. uchi against ATCC microorganisms were similar to the inhibition to microorganisms clinically isolated. The ethyl acetate fraction and the isolate bergenin inhibit the growth of the yeasts C. albicans, C. tropicalis, and C. guilliermondii, but present lower activity against filamentous fungi Aspergillus flavus, A. nidulans, A. niger, and did not inhibit the Gram positive and Gram negative bacteria. The activity of the ethyl acetate fraction and bergenin are in agreement wit its high concentration found in bark extract of E. uchi. Moreover, the selective activity against three Candida species helps to understand its traditional use against infections that affect women.
Resumo:
In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi was observed. The antimicrobial activity of CM4-A200 was dependent on the physical contact of cells with the film surface. Furthermore, CM4-A200 films did not reveal a cytotoxic effect against both normal human skin fibroblasts and human keratinocytes. Finally, we have developed an optimized ex vivo assay with pig skin demonstrating the antimicrobial properties of the CM4-A200 cast films for skin applications.
Resumo:
Dissertação de mestrado em Applied Biochemistry (área de especialização em Biomedicine)
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.
Resumo:
El proyecto se subdividirá en varios subproyectos tendientes a continuar con el análisis de los mecanismos que regulan la respuesta autoinmune y de los mecanismos efectores que conducen al daño tisular en los órganos blanco. Durante el primer año se caracterizarán células presentadoras de antígeno involucradas en la supresión o potenciación de la respuesta autoinmune y se estudiará la inducción de la respuesta autoinmune utilizando GA-liposomas como adyuvante. Se caracterizarán fenotípica y funcionalmente las células de exudado peritoneal (CP) involucradas en la captación y/o presentación del autoantígeno asociado a liposomas. Se estudiará además los efectos del estrés sobre la inmunidad innata, ya que ésta es la base de la defensa de los microorganismos multucelulares y es el resultado de la actividad de diversas células (macrófagos, neutrófilos, natural killer), proteínas séricas (sistema del complemento, proteínas de la fase aguda) y citoquinas. Por otra parte se identificarán el o los autoantígenos responsables de la autoinmunidad debido a que los anticuerpos autoinmunes no cumplen los requisitos para rastrear la librería de cDNA de próstata porque no reconocen proteínas desnaturalizadas; se prevé purificar por inmunoafinidad la proteína autoantigénica y obtener con ella un antisuero heterólogo que sirva para dichos fines. Por otra parte se trabajará con células mononucleares de bazo totales (CmbT) y con células peritoneales (CP) obtenidas de ratas Wistar normales. Se obtendrán a partir de ellas por adherencia a distintos soportes poblacionales enriquecidas en linfocitos T, linfocitos B y macrófagos. En estas poblaciones se evaluará la presencia de la lectina S-lac utilizando técnicas inmunoquímicas e inmunocitoquímicas así como los estímulos que regulan su modulación.
Resumo:
High hydrostatic pressure is being increasingly investigated in food processing. It causes microbial inactivation and therefore extends the shelf life and enhances the safety of food products. Yeasts, molds, and vegetative cells of bacteria can be inactivated by pressures in the range of 200 to 700 MPa. Microorganisms are more or less sensitive to pressure depending on several factors such as type, strain and the phase or state of the cells. In general, Gram-positive organisms are usually more resistant than Gram-negative. High pressure processing modifies the permeability of the cell membrane, the ion exchange and causes changes in morphology and biochemical reactions, protein denaturations and inhibition of genetic mechanisms. High pressure has been used successfully to extend the shelf life of high-acid foods such as refrigerated fruit juices, jellies and jams. There is now an increasing interest in the use of this technology to extend the shelf life of low-acid foods such as different types of meat products.
Resumo:
NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.
Resumo:
Receptors for interleukin 2 (IL-2) esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta]) chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s) and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.