424 resultados para Itch ligase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three Enterococcus faecium strains isolated successively from the same patient, vancomycin-resistant strain BM4659, vancomycin-dependent strain BM4660, and vancomycin-revertant strain BM4661, were indistinguishable by pulsed-field gel electrophoresis and harbored plasmid pIP846, which confers VanB-type resistance. The vancomycin dependence of strain BM4660 was due to mutation P(175)L, which suppressed the activity of the host Ddl D-Ala:D-Ala ligase. Reversion to resistance in strain BM4661 was due to a G-to-C transversion in the transcription terminator of the vanRS(B) operon that lowered the free energy of pairing from -13.08 to -6.65 kcal/mol, leading to low-level constitutive expression of the resistance genes from the P(RB) promoter, as indicated by analysis of peptidoglycan precursors and of VanX(B) D,D-dipeptidase activity. Transcription of the resistance genes, studied by Northern hybridization and reverse transcription, initiated from the P(YB) resistance promoter, was inducible in strains BM4659 and BM4660, whereas it started from the P(RB) regulatory promoter in strain BM4661, where it was superinducible. Strain BM4661 provides the first example of reversion to vancomycin resistance of a VanB-type dependent strain not due to a compensatory mutation in the ddl or vanS(B) gene. Instead, a mutation in the transcription terminator of the regulatory genes resulted in transcriptional readthrough of the resistance genes from the P(RB) promoter in the absence of vancomycin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master, Biomedical & Molecular Sciences) -- Queen's University, 2016-08-23 15:03:30.807

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most common form of dementia, currently affecting more than 50 million people worldwide. In recent years attention towards this disease has risen in search for discovery and development of a drug that can stop it. Indeed, therapies for AD provide only temporary symptomatic relief. The cause for the high attrition rate for AD drug discovery has been attributed to several factors, including the fact that the AD pathogenesis is not yet fully understood. Nevertheless, what is increasingly recognized is that AD is a multifactorial syndrome, characterized by many conditions which may lead to neuronal death. Given this, it is widely accepted that a molecule able to modulate more than one target would bring benefit to the therapy of AD. In the first chapter of this thesis, there are reported two projects regarding the design and synthesis of new series of GSK-3/HDAC dual inhibitors, two of the main enzymes involved in AD. Two different series of compounds were synthesized and evaluated for their inhibitory activity towards the target enzymes. The best compounds of the series were selected for further biologic investigation to evaluate their properties. The second project focused on the design of non ATP-competitive GSK-3 inhibitors combined with HDAC inhibition properties. Also in this case, the best compounds of the series were selected for biologic investigation to further evaluate their properties. In chapter 2, the design and synthesis of a GSK-3-directed Proteolysis Targeting Chimeras (PROTAC), a new technology in drug discovery that act through degradation rather than inhibition, is reported. The design and synthesis of a small series of GSK-3-directed PROTACs was achieved. In vitro assays were performed to evaluate the GSK-3-degradation ability, the effective involvement of E3 ubiquitine ligase in the process and their neuroprotective abilities.