919 resultados para Interleukin-2 Gene
Resumo:
The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.
Resumo:
Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzymelinked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.
Investigação de polimorfismos no gene do receptor 2 da interleucina 8 em indivíduos com periodontite
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective The influence of functional polymorphisms in the genes coding for mannose-binding lectin (MBL) and interleukin-1 receptor antagonist (IL-1ra) on recurrent vulvovaginal candidiasis (RVVC) were examined in an urban Brazilian population. Methods DNA was isolated from buccal swabs of 100 women with RVVC and 100 control women and tested by gene amplification for a single nucleotide polymorphism in codon 54 of the MBL2 gene and for a length polymorphism in intron 2 of the IL1RN gene. Genotype and allele frequencies were compared between groups. Results The frequency of the variant MBL2 B allele, associated with reduced circulating and vaginal MBL concentrations, was 27.0% in RVVC and 8.5% in control women (p < .0001). The MBL2 B, B genotype was present in 12% of RVVC patients and 1% of controls (p = .0025). The IL1RN 2 allele frequency, associated with the highest level of unopposed IL-1 beta activity, was 24.0% in RVVC and 23.4% in controls. The IL1RN genotype distribution was also similar in both groups. Conclusion Carriage of the MBL2 codon 54 polymorphism, but not the IL1RN length polymorphism, predisposes to RVVC in Brazilian women.
Resumo:
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.
Resumo:
Paraffin sections from 190 epithelial ovarian tumours, including 159 malignant and 31 benign epithelial tumours, were analysed immunohistochemically for expression of cyclin-dependent kinase inhibitor 2 (CDKN2A) gene product p16INK4A (p16). Most benign tumours showed no p16 expression in the tumour cells, whereas only 11% of malignant cancers were p16 negative. A high proportion of p16-positive tumour cells was associated with advanced stage and grade, and with poor prognosis in cancer patients. For FIGO stage 1 tumours, a high proportion of p16-positive tumour cells was associated with poorer survival, suggesting that accumulation of p16 is an early event of ovarian tumorigenesis. In contrast to tumour cells, high expression of p16 in the surrounding stromal cells was not associated with the stage and grade, but was associated with longer survival. When all parameters were combined in multivariate analysis, high p16 expression in stromal cells was not an independent predictor for survival, indicating that low p16 expression in stromal cells is associated with other markers of tumour progression. High expression of p16 survival in the stromal cells of tumours from long-term survivors suggests that tumour growth is limited to some extent by factors associated with p16 expression in the matrix.
Resumo:
Many primary immunodeficiency disorders of differing etiologies have been well characterized, and much understanding of immunological processes has been gained by investigating the mechanisms of disease. Here, we have used a whole-genome approach, employing single-nucleotide polymorphism and gene expression microarrays, to provide insight into the molecular etiology of a novel immunodeficiency disorder. Using DNA copy number profiling, we define a hyperploid region on 14q11.2 in the immunodeficiency case associated with the interleukin (IL)-25 locus. This alteration was associated with significantly heightened expression of IL25 following T-cell activation. An associated dominant type 2 helper T cell bias in the immunodeficiency case provides a mechanistic explanation for recurrence of infections by pathogens met by Th1-driven responses. Furthermore, this highlights the capacity of IL25 to alter normal human immune responses.
Resumo:
Elevated circulating interleukin-6 (IL6) and up-regulated S100P in prostate cancer (PCa) specimens correlate independently with progression to androgen-independent and metastatic PCa. The cause of up-regulated S100P levels in advanced PCa remains to be determined. We investigated the possibility that IL6 is an inducer of S100P. Determination of mRNA and protein levels by real-time PCR and Western blotting revealed that IL6 is a more potent inducer of S100P than the synthetic androgen, R1881, in the LNCaP/C4-2B model of PCa progression. IL6 did not require androgen to induce S100P in these cells, which express a functional androgen receptor (AR). Like R1881, IL6 was unable to induce S100P in PC3 cells that lack a functional AR. IL6 did not strongly induce the AR-dependent genes PSA and KLK2 and, contrary to R1881, down-regulated Cyr61/CCN1, a potential marker that is down-regulated in PCa. Epidermal growth factor (EGF), which like IL6 is a non-androgen activator of the AR, did not induce S100P. The data identifies a unique gene-induction profile for IL6 and suggests that IL6 may require a functional AR for S100P induction. A link between elevated IL6 and up-regulated S100P in androgen-refractory and metastatic PCa is postulated.
Resumo:
Background: The present study aimed to evaluate the antitumor effectiveness of systemic interleukin (IL)-12 gene therapy in murine sarcoma models, and to evaluate its interaction with the irradiation of tumors and metastases. To avoid toxic side-effects of IL-12 gene therapy, the objective was to achieve the controlled release of IL-12 after intramuscular gene electrotransfer. Methods: Gene electrotransfer of the plasmid pORF-mIL12 was performed into the tibialis cranialis in A/J and C57BL/6 mice. Systemic release of the IL-12 was monitored in the serum of mice after carrying out two sets of intramuscular IL-12 gene electrotransfer of two different doses of plasmid DNA. The antitumor effectiveness of IL-12 gene electrotransfer alone or in combination with local tumor or lung irradiation with X-rays, was evaluated on subcutaneous SA-1 and LPB tumors, as well as on lung metastases. Results: A synergistic antitumor effect of intramuscular gene electrotransfer combined with local tumor irradiation was observed as a result of the systemic distribution of IL-12. The gene electrotransfer resulted in up to 28% of complete responses of tumors. In combination with local tumor irradiation, the curability was increased by up to 100%. The same effect was observed for lung metastases, where a potentiating factor of 1.3-fold was determined. The amount of circulating IL-12 was controlled by the number of repeats of gene electrotransfer and by the amount of the injected plasmid. Conclusions: The present study demonstrates the feasibility of treatment by IL-12 gene electrotransfer combined with local tumor or lung metastases irradiation on sarcoma tumors for translation into the clinical setting. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
PURPOSE/OBJECTIVES: To identify latent classes of individuals with distinct quality-of-life (QOL) trajectories, to evaluate for differences in demographic characteristics between the latent classes, and to evaluate for variations in pro- and anti-inflammatory cytokine genes between the latent classes. DESIGN: Descriptive, longitudinal study. SETTING: Two radiation therapy departments located in a comprehensive cancer center and a community-based oncology program in northern California. SAMPLE: 168 outpatients with prostate, breast, brain, or lung cancer and 85 of their family caregivers (FCs). METHODS: Growth mixture modeling (GMM) was employed to identify latent classes of individuals based on QOL scores measured prior to, during, and for four months following completion of radiation therapy. Single nucleotide polymorphisms (SNPs) and haplotypes in 16 candidate cytokine genes were tested between the latent classes. Logistic regression was used to evaluate the relationships among genotypic and phenotypic characteristics and QOL GMM group membership. MAIN RESEARCH VARIABLES: QOL latent class membership and variations in cytokine genes. FINDINGS: Two latent QOL classes were found: higher and lower. Patients and FCs who were younger, identified with an ethnic minority group, had poorer functional status, or had children living at home were more likely to belong to the lower QOL class. After controlling for significant covariates, between-group differences were found in SNPs in interleukin 1 receptor 2 (IL1R2) and nuclear factor kappa beta 2 (NFKB2). For IL1R2, carrying one or two doses of the rare C allele was associated with decreased odds of belonging to the lower QOL class. For NFKB2, carriers with two doses of the rare G allele were more likely to belong to the lower QOL class. CONCLUSIONS: Unique genetic markers in cytokine genes may partially explain interindividual variability in QOL. IMPLICATIONS FOR NURSING: Determination of high-risk characteristics and unique genetic markers would allow for earlier identification of patients with cancer and FCs at higher risk for poorer QOL. Knowledge of these risk factors could assist in the development of more targeted clinical or supportive care interventions for those identified.
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Resumo:
Objective: To test the association of interleukin 1 (IL1) gene family members with ankylosing spondylitis (AS), previously reported in Europid subjects, in an ethnically remote population. Methods: 200 Taiwanese Chinese AS patients and 200 ethnically matched healthy controls were genotyped for five single nucleotide polymorphisms (SNPs) and the IL1RN.VNTR, markers previously associated with AS. Allele, genotype, and haplotype frequencies were compared between cases and controls. Results: Association of alleles and genotypes of the markers IL1F10.3, IL1RN.4, and IL1RN.VNTR was observed with AS (p<0.05). Haplotypes of pairs of these markers and of the markers IL1RN.6/1 and IL1RN.6/2 were also significantly associated with AS. The strongest associations observed were with the marker IL1RN.4, and with the two-marker haplotype IL1RN.4-IL1RN.VNTR (both p = 0.004). Strong linkage disequilibrium was observed between all marker pairs except those involving IL1B-511 (D′ 0.4 to 0.9, p<0.01). Conclusions: The IL1 gene cluster is associated with AS in Taiwanese Chinese. This finding provides strong statistical support that the previously observed association of this gene cluster with AS is a true positive finding.
Resumo:
The koala (Phascolarctos cinereus) is an iconic Australian marsupial species that is facing many threats to its survival. Chlamydia pecorum infections are a significant contributor to this ongoing decline. A major limiting factor in our ability to manage and control chlamydial disease in koalas is a limited understanding of the koala’s cell-mediated immune response to infections by this bacterial pathogen. To identify immunological markers associated with chlamydial infection and disease in koalas, we used koala-specific Quantitative Real Time PCR (qrtPCR) assays to profile the cytokine responses of Peripheral Blood Mononuclear Cells (PBMCs) collected from 41 koalas with different stages of chlamydial disease. Target cytokines included the principal Th1 (Interferon gamma; IFNγ), Th2 (Interleukin 10; IL10), and pro-inflammatory cytokines (Tumor Necrosis Factor alpha; TNFα). A novel koala-specific IL17A qrtPCR assay was also developed as part of this study to quantitate the gene expression of this Th17 cytokine in koalas. A statistically significant higher IL17A gene expression was observed in animals with current chlamydial disease compared to animals with asymptomatic chlamydial infection. A modest up-regulation of pro-inflammatory cytokines, such as TNFα and IFNγ, was also observed in these animals with signs of current chlamydial disease. IL10 gene expression was not evident in the majority of animals from both groups. Future longitudinal studies are now required to confirm the role played by cytokines in pathology and/or protection against C. pecorum infection in the koala.