923 resultados para Intensity scintillations
Resumo:
The study was to determine if breast cancer patients aged 65 and above could be given adjuvant chemotherapy safely while achieving an acceptable relative dose intensity of at least 85%. We identified all patients aged 65 and over who received adjuvant chemotherapy over the 10 year period, November 1999 to October 2009, and determined the proportion that achieved a relative dose intensity of at least 85% as well as the tolerability of their treatment. A total of 101 patients were identified, with a median age of 69 years (range 65-78).Of these, 25.7% of patients had at least one major comorbidity, 84.2% had a tumor size of 5 cm or less, 73.3% were node positive and 58.4% were hormone receptor positive. The chemotherapy regimens used were AC (Doxorubicin and Cyclophosphamide), FEC (Fluorouracil, Epirubicin, and Cyclophosphamide), CMF (Cyclophosphamide, Methotrexate, and Fluorouracil) and ECMF (Epirubicin followed by CMF). Seventy-nine patients (78.2%) achieved the relative dose intensity of at least 85%. With respect to toxicity, 11.9% of patients developed febrile neutropenia and 23.8% of patients required hospital admission during the treatment period, but there were no treatment-related deaths in the group. A significant proportion of patients aged 65 and above achieved the intended dose intensity of at least 85% over this 10-year period, with manageable toxicity levels. This supports the use of these regimens as adjuvant chemotherapy for breast cancer in this age group. © 2011 Wiley Periodicals, Inc.
Resumo:
We show that for collisions of electrons with a high-intensity laser, discrete photon emissions introduce a transverse beam spread that is distinct from that due to classical (or beam shape) effects. Via numerical simulations, we show that this quantum induced transverse momentum gain of the electron is manifest in collisions with a realistic laser pulse of intensity within reach of current technology, and we propose it as a measurable signature of strong-field quantum electrodynamics.
Resumo:
This chapter focuses on the question of how to explain agency in the context of motherhood. In so doing, it seeks to go beyond the tendency to focus exclusively on the burden of coordination which institutional structures generate for mothers, in order to examine the evaluative burden which normative structures demand of this role. Drawing on interview material with 40 middle class mothers across two research sites in the UK and US, the paper develops a three-part typology of maternal role performance. This relies on the insights of contemporary action theory, with its emphasis on emotionally configured intersubjective interpretation of normative structures, and more specifically on Joas’s pragmatist theorisation of social action as a creative process. The paper argues that maternal agency takes three distinct ideal-typical forms, namely romantic expressivism, rational instrumentalism, and pragmatism. These are conceived as distinct creative responses to the evaluative demands of motherhood, as the agents go about interpreting situated norms, needs and interests.
Resumo:
The interaction of high‐intensity laser pulses with matter releases instantaneously ultra‐large currents of highly energetic electrons, leading to the generation of highly‐transient, large‐amplitude electric and magnetic fields. We report results of recent experiment in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channelling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser‐irradiated thin metallic foils. An application employing laser‐driven impulsive fields for energy‐selective ion beam focusing is also presented.
Resumo:
Objectives Stress control (SC), a brief psycho-education course, was implemented to increase access to psychological therapies in line with Northern Irish mental health service statutory drivers. The first aim of this study was to gauge the efficacy of SC in a robust manner with clinical significance testing. The second aim was to assess whether demographics traditionally ‘hard-to-reach’ – males, younger adults and those from deprived areas – accessed SC. The third aim was to elucidate what prompted their access and the experiences of attendees at SC. Methods Attendees at SC were 170 adults over six iterations of the course. Pre- and post-questionnaires included the Depression Anxiety Stress Scales – 21, captured demographic details and qualitative feedback, which was subject to a mixed-methods analysis. Results SC attendees reported significant decreases on depression, anxiety and stress sub-scales post-intervention. Moreover, 38.71% ( n =36) of attendees who completed SC exhibited clinically significant improvement afterwards on one or more sub-scale. Attendance figures for males, younger adults and those classified as socioeconomically deprived were modest. Patterns within the data suggested prospective success for targeting these cohorts. Conclusions SC attracted people in need of mental healthcare input and affected quantifiable change within those people’s lives, while satisfying statutory demands for service delivery in an accessible community context. Recommendations to increase engagement with those traditionally ‘hard-to-reach’ for psychological services are provided, which, if implemented, have the potential to achieve further compliance with Northern Irish mental health statutory drivers.
Resumo:
The line intensity ratio method provides a nonintrusive diagnostic for the measurement of electron temperature in microwave-generated plasmas. For optically thin plasmas of low density, a line intensity method using He I lines can often be used, and is based on the fact that the electron impact excitation rate coefficients for helium singlet and triplet states are insensitive to electron density but differ as a function of the electron temperature. Line intensity measurements are presented from microwave-generated helium plasmas. Both steady-state corona and collision-radiative theoretical models are used to evaluate the ground and excited state populations. The line ratio versus electron temperature obtained from both of these methods are compared with the results from measurements. However, it is not possible to diagnose the electron temperature from the line ratios alone due to the presence of significant opacity and nonnegligible 1s2s S-3 metastable fraction in the plasma. (C) 2004 American Institute of Physics.
Resumo:
Introduction The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of ‘isotoxic’ radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable.
Methods and analysis Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years.
Ethics and dissemination The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West—Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally.
Trial registration number NCT01836692; Pre-results.
Resumo:
OBJECTIVE: Assess efficacy and acceptability of reduced intensity constraint-induced movement therapy (CIMT) in children with cerebral palsy (CP).
METHODS: Single-subject research design and semi-structured interviews. Children (9-11y) with hemiplegia underwent five baseline assessments followed by two weeks CIMT. Six further assessments were performed during treatment and follow-up phases. The primary outcome was the Melbourne Assessment of Unilateral Upper Limb Function (MUUL). Quantitative data were analysed using standard single-subject methods and qualitative data by thematic analysis.
RESULTS: Four of the seven participants demonstrated statistically significant improvements in MUUL (3-11%, p < .05). Two participants achieved significant improvements in active range of motion but strength and tone remained largely unchanged. Qualitative interviews highlighted limitations of the restraint, importance of family involvement, and coordination of treatment with education.
CONCLUSIONS: Reduced intensity CIMT may be effective for some children in this population; however it is not suitable for all children with hemiplegia.
Resumo:
In this paper, a spiking neural network (SNN) architecture to simulate the sound localization ability of the mammalian auditory pathways using the interaural intensity difference cue is presented. The lateral superior olive was the inspiration for the architecture, which required the integration of an auditory periphery (cochlea) model and a model of the medial nucleus of the trapezoid body. The SNN uses leaky integrateand-fire excitatory and inhibitory spiking neurons, facilitating synapses and receptive fields. Experimentally derived headrelated transfer function (HRTF) acoustical data from adult domestic cats were employed to train and validate the localization ability of the architecture, training used the supervised learning algorithm called the remote supervision method to determine the azimuthal angles. The experimental results demonstrate that the architecture performs best when it is localizing high-frequency sound data in agreement with the biology, and also shows a high degree of robustness when the HRTF acoustical data is corrupted by noise.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
In the last few years, the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems, the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how pleasant is a voice from a perceptual point of view when the final application is a speech based interface. In this paper we present an objective definition for voice pleasantness based on the composition of a representative feature subset and a new automatic voice pleasantness classification and intensity estimation system. Our study is based on a database composed by European Portuguese female voices but the methodology can be extended to male voices or to other languages. In the objective performance evaluation the system achieved a 9.1% error rate for voice pleasantness classification and a 15.7% error rate for voice pleasantness intensity estimation.
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.
Resumo:
Several recent studies have described the period of impaired alertness and performance known as sleep inertia that occurs upon awakening from a full night of sleep. They report that sleep inertia dissipates in a saturating exponential manner, the exact time course being task dependent, but generally persisting for one to two hours. A number of factors, including sleep architecture, sleep depth and circadian variables are also thought to affect the duration and intensity. The present study sought to replicate their findings for subjective alertness and reaction time and also to examine electrophysiological changes through the use of event-related potentials (ERPs). Secondly, several sleep parameters were examined for potential effects on the initial intensity of sleep inertia. Ten participants spent two consecutive nights and subsequent mornings in the sleep lab. Sleep architecture was recorded for a fiiU nocturnal episode of sleep based on participants' habitual sleep patterns. Subjective alertness and performance was measured for a 90-minute period after awakening. Alertness was measured every five minutes using the Stanford Sleepiness Scale (SSS) and a visual analogue scale (VAS) of sleepiness. An auditory tone also served as the target stimulus for an oddball task designed to examine the NlOO and P300 components ofthe ERP waveform. The five-minute oddball task was presented at 15-minute intervals over the initial 90-minutes after awakening to obtain six measures of average RT and amplitude and latency for NlOO and P300. Standard polysomnographic recording were used to obtain digital EEG and describe the night of sleep. Power spectral analyses (FFT) were used to calculate slow wave activity (SWA) as a measure of sleep depth for the whole night, 90-minutes before awakening and five minutes before awakening.
Resumo:
A low-impact, high-intensity interval exercise (HIE) bout was used to determine whether an association exists between cytokines and bone turnover markers following an acute bout of exercise. Twenty-three recreationally active males (21.8±2.4yr) performed a single HIE bout on a cycle ergometer at 90% relative intensity. Venous blood samples were collected prior to exercise, 5-minutes, 1-hour, and 24-hours post-exercise, and were analyzed for serum levels of pro-inflammatory (IL-6, IL-1α, IL-1β, and TNF-α) and anti- inflammatory cytokines (IL-10) and markers of bone formation (BAP, OPG) and resorption (NTX, RANKL). Significant effects were observed with all bone markers, especially 5-minutes post-exercise with BAP, OPG, and RANKL increasing from baseline (p<0.05). Significant effects were also observed for IL-1α, IL-1β, IL-6, and TNF-α (p<0.00, p=0.04, p=0.03, p<0.00). In addition, post-exercise changes in NTX, BAP, and OPG were significantly correlated pro- and anti-inflammatory cytokines, suggesting that an interaction exists between the immune and skeletal response to exercise.