905 resultados para Integrated Wavefield Separation Analysis.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
The separation of mixtures of proteins by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) is a technique that is widely used—and, indeed, this technique underlies many of the assays and analyses that are described in this book. While SDS-PAGE is routine in many labs, a number of issues require consideration before embarking on it for the first time. We felt, therefore, that in the interest of completeness of this volume, a brief chapter describing the basics of SDS-PAGE would be helpful. Also included in this chapter are protocols for the staining of SDS-PAGE gels to visualize separated proteins, and for the electrotransfer of proteins to a membrane support (Western blotting) to enable immunoblotting, for example. This chapter is intended to complement the chapters in this book that require these techniques to be performed. Therefore, detailed examples of why and when these techniques could be used will not be discussed here.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Resumo:
The co-adsorption of CO and O on the unreconstructed (1 x 1) phase of Ir {100} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{100} surface precovered with 0.5 ML O, a mixed c(4 x 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 x 10) periodicity. This overlayer consists of stripes with a local p(2 x 1)-O arrangement of oxygen atoms separated by stripes of uncovered It. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 x 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 x 2)-CO and p(2 x 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO, in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K. LEED IV structural analysis of the mixed c(4 x 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 angstrom away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 angstrom); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Three ochre samples (A (orange-red in colour), B (red) and C (purple)) from Clearwell Caves, (Gloucestershire, UK) have been examined using an integrated analytical methodology based on the techniques of IR and diffuse reflectance UV-visible-NIR spectroscopy, X-ray diffraction, elemental analysis by ICP-AES and particle size analysis. It is shown that the chromophore in each case is haematite. The differences in colour may be accounted for by (i) different mineralogical and chemical composition in the case of the orange ochre, where hi,,her levels of dolomite and copper are seen and (ii) an unusual particle size distribution in the case of the purple ochre. When the purple ochre was ground to give the same particle size distribution as the red ochre then the colours of the two samples became indistinguishable. An analysis has now been completed of a range of ochre samples with colours from yellow to purple from the important site of Clearwell Caves. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Thermal non-destructive testing (NDT) is commonly used for assessing aircraft structures. This research work evaluates the potential of pulsed -- transient thermography for locating fixtures beneath aircraft skins in order to facilitate accurate automated assembly operations. Representative aluminium and carbon fibre aircraft skin-fixture assemblies were modelled using thermal modelling software. The assemblies were also experimentally investigated with an integrated pulsed thermographic evaluation system, as well as using a custom built system incorporating a miniature un-cooled camera. Modelling showed that the presence of an air gap between skin and fixture significantly reduced the thermal contrast developed, especially in aluminium. Experimental results show that fixtures can be located to accuracies of 0.5 mm.
Resumo:
Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.
Resumo:
Examination by high temperature GC (HTGC) of the methyl esters of the so-called 'ARN' naphthenic acids from crude oils of North Sea UK, Norwegian Sea and West African oilfields revealed the distributions of resolved 4-8 ring C-80 tetra acids and trace amounts of other acids. Whilst all three oils contained apparently the same the proportions of each differed, possibly reflecting the growth tempe acids, ratures of the archaebacteria from which the acids are assumed to have originated. The structures of the 4, 5, 7 and 8 ring acids are tentatively assigned by comparison with the known 6 ring acid and related natural products and an HPLC method for the isolation of the individual acids is described. ESI-MS of individual acids isolated by preparative HPLC established the elution order of the 4-8 ring acids on the HPLC and HTGC systems and revealed the presence of previously unreported acids tentatively identified as C-81 and C-82 7 and 8 ring analogues.
Resumo:
Aims: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. Methods and Results: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. Conclusions: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. Significance and Impact of the Study: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.
Resumo:
The European Union sees the introduction of the ePassport as a step towards rendering passports more secure against forgery while facilitating more reliable border controls. In this paper we take an interdisciplinary approach to the key security and privacy issues arising from the use of ePassports. We further anallyse how European data protection legislation must be respected and what additional security measures must be integrated in order to safeguard the privacy of the EU ePassport holder.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
Objectives To evaluate the effectiveness of integrated motivational interviewing and cognitive behaviour therapy in addition to standard care for patients with psychosis and a co-morbid substance use problem. Design Two-centre, open, rater-blind randomised controlled trial Setting UK Secondary Care Participants 327 patients with clinical diagnoses of schizophrenia, schizophreniform or schizoaffective disorder and DSM-IV diagnoses of drug and/or alcohol dependence or abuse Interventions Participants were randomly allocated to integrated motivational interviewing and cognitive behaviour therapy or standard care. Therapy has two phases. Phase one – “motivation building” – concerns engaging the patient, then exploring and resolving ambivalence for change in substance use. Phase two –“Action” – supports and facilitates change using cognitive behavioural approaches. Up to 26 therapy sessions were delivered over one year. Main outcomes The primary outcome was death from any cause or admission to hospital in the 12 months after therapy. Secondary outcomes were frequency and amount of substance use (Timeline Followback), readiness to change, perceived negative consequences of use, psychotic symptom ratings, number and duration of relapses, global assessment of functioning and deliberate self harm, at 12 and 24 months, with additional Timeline Followback assessments at 6 and 18 months. Analysis was by intention-to-treat with robust treatment effect estimates. Results 327 participants were randomised. 326 (99.7%) were assessed on the primary outcome, 246 (75.2%) on main secondary outcomes at 24 months. Regarding the primary outcome, there was no beneficial treatment effect on hospital admissions/ death during follow-up, with 20.2% (33/163) of controls and 23.3% (38/163) of the therapy group deceased or admitted (adjusted odds-ratio 1.16; P= 0.579; 95% confidence interval 0.68 to 1.99). For secondary outcomes there was no treatment effect on frequency of substance use or perceived negative consequences, but a statistically significant effect of therapy on amount used per substance-using day (adjusted odds-ratios: (a) for main substance 1.50; P=0.016; 1.08 to 2.09, (b) all substances 1.48; P=0.017; 1.07 to 2.05). There was a statistically significant treatment effect on readiness to change use at 12 months (adjusted odds-ratio 2.05; P=0.004; 1.26 to 3.31), not maintained at 24 months. There were no treatment effects on assessed clinical outcomes. Conclusions Integrated motivational interviewing and cognitive behaviour therapy for people with psychosis and substance misuse does not improve outcome in terms of hospitalisation, symptom outcomes or functioning. It does result in a reduction in amount of substance use which is maintained over the year’s follow up. Trial registration Current Controlled Trials: ISRCTN14404480
Resumo:
The differential phase (ΦDP) measured by polarimetric radars is recognized to be a very good indicator of the path integrated by rain. Moreover, if a linear relationship is assumed between the specific differential phase (KDP) and the specific attenuation (AH) and specific differential attenuation (ADP), then attenuation can easily be corrected. The coefficients of proportionality, γH and γDP, are, however, known to be dependent in rain upon drop temperature, drop shapes, drop size distribution, and the presence of large drops causing Mie scattering. In this paper, the authors extensively apply a physically based method, often referred to as the “Smyth and Illingworth constraint,” which uses the constraint that the value of the differential reflectivity ZDR on the far side of the storm should be low to retrieve the γDP coefficient. More than 30 convective episodes observed by the French operational C-band polarimetric Trappes radar during two summers (2005 and 2006) are used to document the variability of γDP with respect to the intrinsic three-dimensional characteristics of the attenuating cells. The Smyth and Illingworth constraint could be applied to only 20% of all attenuated rays of the 2-yr dataset so it cannot be considered the unique solution for attenuation correction in an operational setting but is useful for characterizing the properties of the strongly attenuating cells. The range of variation of γDP is shown to be extremely large, with minimal, maximal, and mean values being, respectively, equal to 0.01, 0.11, and 0.025 dB °−1. Coefficient γDP appears to be almost linearly correlated with the horizontal reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (KDP) and correlation coefficient (ρHV) of the attenuating cells. The temperature effect is negligible with respect to that of the microphysical properties of the attenuating cells. Unusually large values of γDP, above 0.06 dB °−1, often referred to as “hot spots,” are reported for 15%—a nonnegligible figure—of the rays presenting a significant total differential phase shift (ΔϕDP > 30°). The corresponding strongly attenuating cells are shown to have extremely high ZDR (above 4 dB) and ZH (above 55 dBZ), very low ρHV (below 0.94), and high KDP (above 4° km−1). Analysis of 4 yr of observed raindrop spectra does not reproduce such low values of ρHV, suggesting that (wet) ice is likely to be present in the precipitation medium and responsible for the attenuation and high phase shifts. Furthermore, if melting ice is responsible for the high phase shifts, this suggests that KDP may not be uniquely related to rainfall rate but can result from the presence of wet ice. This hypothesis is supported by the analysis of the vertical profiles of horizontal reflectivity and the values of conventional probability of hail indexes.
Resumo:
We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen–Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen–Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.