996 resultados para Infrared wavelengths
Resumo:
A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes.
The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology.
This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).
Resumo:
Spectral data are presented, giving intensities of the Brackett ɤ (B7) line at six positions in M 42 and of the Brackett ten through fourteen (B10-B14) lines plus the He 4d3D-3p3p0 line at three positions in M 42. Observations of the Brackett ɤ line are also given for the planetary nebulae NGC 7027 and IC 418. Brackett gamma is shown to exhibit an anomalous satellite line in NGC 7027. Broadband data are presented, giving intensities at effective wavelengths of 1.25 μ, 1.65 μ, 2.2 μ, 3.5 μ and 4.8 μ for three positions in M 42.
Comparisons with visual and radio data as well as 12 micron and 20 micron data are used to derive reddening, electron temperatures, and electron densities for M 42 and the two planetaries, as well as a helium abundance for M 42. A representative electron temperature of 8400°K ± 1000°K, an electron density of 1.5 ±0.1 x 103 cm-3 and a He/H number density ratio of 0.10 +0.10/-0.05 are derived for the central region of M 42. The electron temperature is found to increase slightly with distance from the Trapezium.
M 42 is shown to emit in excess of the predicted recombination radiation throughout the entire infrared spectrum. The variations in the excess with wavelength and with position are analyzed to determine which of several physical processes may be operating. The longer wavelength infrared excess is shown to be dominated by dust emission, while the shorter wavelength infrared excess is caused by dust scattering. The dust is shown to be larger than the average interstellar particle. A new feature of the Orion red star ORS-1 is found in that it appears to have a reflection nebula around it.
Resumo:
The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.
Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.
We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM∗ with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.
By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.
Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.
A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.
Resumo:
Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.
This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.
Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.
It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.
Resumo:
The near-infrared nonvolatile holographic recording has been realized in a doubly doped LiNbO3:Fe:Rh crystal by the traditional two-center holographic recording scheme, for the first time. The recording performance of this crystal has been investigated by recording with 633 nm red light, 752 nm red light and 799 nm near-infrared light and sensitizing with 405 nm purple light. The experimental results show that, co-doped with Fe and Rh, the near-infrared absorption and the photovoltaic coefficient of shallow trap Fe are enhanced in this LiNbO3:Fe:Rh crystal, compared with other doubly doped LiNbO3 crystals Such as LiNbO3:Fe:Mn. It is also found that the sensitizing light intensity affects the near-infrared recording sensitivity in a different way than two-center holographic recording with shorter wavelength, and the origin of experimental results is analyzed. (C) 2007 Elsevier GrnbH. All rights reserved.
Resumo:
The fluorescence and up-conversion spectral properties of Er3+-doped TeO2-ZnO and TeO2-ZnO-PbCl2 glasses suitable for developing optical fiber amplifier and laser have been fabricate and characterized. Strong green (around 527-550 nm) and red (around 661 nm) up-conversion emissions under 977 nm laser diode excitation were investigated, corresponding to H-2(11/2), S-4(3/2), --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of Er3+ ions respectively, have been observed and the involved mechanisms have been explained. The dependence of up-converted fluorescence intensity versus laser power confirm that two-photons contribute to up-conversion of the green-red emissions. The novelty of this kind of optical material has been its ability in resisting devitrification, and its promising optical properties strongly encourage for their further development as the rare-earth doped optical fiber amplifiers and upconversion fiber laser systems.
Resumo:
We investigate the broadband infrared emission of bismuth doped and bismuth/dysprosium codoped chalcohalide glasses. It is found that the bismuth/dysprosium codoping can drastically enhance the fluorescence as compared with either bismuth or dysprosium doped glasses. Meanwhile, the full width at half maximum of bismuth/dysprosium codoped glasses is over 170 nm, which is the largest value among all the reported rare-earth doped chalcohalide glasses. An ideal way for energy consumption between bismuth and dysprosium ions is supposed. Such improved gain spectra of both bismuth and dysprosium ions may have potential applications in developing broadband fibre amplifiers.
Resumo:
This letter reports the ultrabroadband infrared luminescence from 1000- to 1700-nm wavelength range and demonstrate optical amplification at the second optical communication window in a novel bismuth-doped germanosilicate glass. The full-width at half-maximum of the luminescence is about 300 mn and the optical gain is larger than 1.37 within the wavelength region from 1272 to 1348 nm with pump power 0.97 W. This material could be useful to fabricate ultrabroadband optical fiber amplifiers.
Resumo:
Bismuth (Bi)-doped and Bi/Dy co-doped chalcohalide glasses are investigated as promising materials for amplifiers in optical communication. The samples synthesized at lower melting temperatures (MTs) are characterized by more intensified infrared emissions. With respect to the redox process of a liquid mixture at different MTs, we attribute an emission at 1230 nm to low-valent Bi ions. The lower MT favors the formation of LVB ions, i.e. Bi+ or Bi2+, while the higher MT promotes the production of higher-valent Bi ions Bi3+. An enhanced broadband infrared luminescence with the full-width at half-maximum over 200 nm is achieved from the present Bi/Dy co-doped chalcohalide glasses.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.
Resumo:
We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.
Resumo:
Transparent glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals were synthesized and characterized by X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. Intense broad-band luminescence centering at 1200 nm was observed when the sample was excited by a diode laser at 980 nm. The room-temperature fluorescent lifetime was 665 mu s, which is longer than the Ni2+-doped ZnAl2O4 and LiGa5O8 glass-ceramics and is also comparable to the Ni2+-doped LiGa5O8 single crystal. The intense infrared luminescence with long fluorescent lifetime may be ascribed to the high crystal field hold by Ni2+ and the moderate lattice phonon energy of beta-Ga2O3. The excellent optical properties of this novel material indicate that it might be a promising candidate for broad-band amplifiers and room-temperature tunable lasers.
Resumo:
Broadband infrared luminescence centred at around 1300 nm with full-width at half maximum of about 342 nm was observed from transparent Ni2+-doped lithium-alumino-silicate glass-ceramics embedded with beta-eucryptite crystallines. The room temperature fluorescent lifetime was 98 mu s. The transparent glass-ceramics may have potential applications in a widely tunable laser and a super-broadband optical amplifier for optical communications.