868 resultados para Increased Oxidative Stress
Resumo:
A strain of Synechococcus sp. strain PCC 7942 with no functional Fe superoxide dismutase (SOD), designated sodB−, was characterized by its growth rate, photosynthetic pigments, and cyclic photosynthetic electron transport activity when treated with methyl viologen or norflurazon (NF). In their unstressed conditions, both the sodB− and wild-type strains had similar chlorophyll and carotenoid contents and catalase activity, but the wild type had a faster growth rate and higher cyclic electron transport activity. The sodB− was very sensitive to methyl viologen, indicating a specific role for the FeSOD in protection against superoxide generated in the cytosol. In contrast, the sodB− mutant was less sensitive than the wild type to oxidative stress imposed with NF. This suggests that the FeSOD does not protect the cell from excited singlet-state oxygen generated within the thylakoid membrane. Another up-regulated antioxidant, possibly the MnSOD, may confer protection against NF in the sodB− strain. These results support the hypothesis that different SODs have specific protective functions within the cell.
Resumo:
Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al.
Resumo:
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.
Resumo:
To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.
Resumo:
A gene encoding a fusion protein consisting of Escherichia coli iron superoxide dismutase (FeSOD) with the mitochondrial targeting presequence of yeast manganese superoxide dismutase (MnSOD) was cloned and expressed in E. coli and in Saccharomyces cerevisiae DL1Mn- yeast cells deficient in MnSOD. In the yeast cells the fusion protein was imported into the mitochondrial matrix. However, the presequence was not cleaved. In a control set of experiments, the E. coli FeSOD gene without the yeast MnSOD leader sequence was also cloned and expressed in S. cerevisiae DL1Mn- cells. In this case the FeSOD was located in the cytosol and was not imported into the mitochondrial matrix. E. coli FeSOD, with and without the yeast MnSOD presequence, proved to be active in yeast, but, whereas the FeSOD targeted to the mitochondria of yeast cells deficient in MnSOD protected the cells from the toxic effects of oxidative stress, FeSOD without the yeast MnSOD presequence did not protect the yeast cells deficient in MnSOD against oxidative stress.
Resumo:
We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.
Resumo:
Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.
Resumo:
Renal transplant recipients (RTRs) have elevated oxidative stress and a high incidence of cardiovascular morbidity and mortality. Although recent studies do not support the use of antioxidant supplements as a cardioprotectant in the general population, evidence suggests that RTRs may represent individuals that would benefit from this therapy. RTRs have elevated oxidative stress probably caused by the immunosuppressive therapy, and although only a small number of studies have examined the effects of antioxidant supplementation in these patients, most have reported beneficial findings. This review discusses these studies along with the rationale for the use of antioxidant supplements in RTRs and a call for more research to investigate this important topic.
Resumo:
Aims Alpha-lipoic acid (ALA) is a thiol compound with antioxidant properties used in the treatment of diabetic polyneuropathy. ALA may also improve arterial function, but there have been scant human trials examining this notion. This project aimed to investigate the effects of oral and intra-arterial ALA on changes in systemic and regional haemodynamics, respectively. Methods In study 1, 16 healthy older men aged 58 +/- 7 years (mean +/- SD) received 600 mg of ALA or placebo, on two occasions 1 week apart, in a randomized cross-over design. Repeated measures of peripheral and central haemodynamics were then obtained for 90 min. Central blood pressure and indices of arterial stiffness [augmentation index (AIx) and estimated aortic pulse wave velocity] were recorded non-invasively using pulse wave analysis. Blood samples obtained pre- and post-treatments were analysed for erythrocyte antioxidant enzyme activity, plasma nitrite and malondialdehyde. In study 2 the effects of incremental cumulative doses (0.5, 1.0, 1.5 and 2.0 mg ml(-1) min(-1)) of intra-arterial ALA on forearm blood flow (FBF) were assessed in eight healthy subjects (aged 31 +/- 5 years) by conventional venous occlusion plethysmography. Results There were no significant changes on any of the central or peripheral haemodynamic measures after either oral or direct arterial administration of ALA. Plasma ALA was detected after oral supplementation (95% confidence intervals 463, 761 ng ml(-1)), but did not alter cellular or plasma measures of oxidative stress. Conclusions Neither oral nor intra-arterial ALA had any effect on regional and systemic haemodynamics or measures of oxidative stress in healthy men.
Resumo:
Defenses against oxidative stress are crucial for the survival of the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. An Mn(II) uptake system is involved in manganese (Mn)-dependent resistance to superoxide radicals in N. gonorrhoeae. Here, we show that accumulation of Mn also confers resistance to hydrogen peroxide killing via a catalase-independent mechanism. An mntC mutant of N. meningitidis is susceptible to oxidative killing, but supplementation of growth media with Mn does not enhance the organism's resistance to oxidative killing. N. meningitidis is able to grow in the presence of millimolar levels of Mn ion, in contrast to N. gonorrhoeae, whose growth is retarded at Mn concentrations >100 mumol/L, indicating that Mn homeostasis in the 2 species is probably quite different. N. meningitidis superoxide dismutase B plays a role in protection against oxidative killing. However, a sodC mutant of N. meningitidis is no more sensitive to oxidative killing than is the wild type. A cytochrome c peroxidase (Ccp) is present in N. gonorrhoeae but not in N. meningitidis. Investigations of a ccp mutant revealed a role for Ccp in protection against hydrogen peroxide killing. These differences in oxidative defenses in the pathogenic Neisseria are most likely a result of their localization in different ecological niches.
Resumo:
Ischaemia-reperfusion and toxic injury are leading causes of acute renal failure (ARF). Both of these injury initiators use secondary mediators of damage in oxygen-derived free radicals. Several recent publications about ischaemia-reperfusion and toxin-induced ARF have indicated that plasma membrane structures called caveolae, and their proteins, the caveolins, are potential participants in protecting or repairing renal tissues. Caveolae and caveolins have previously been ascribed many functions, a number of which may mediate cell death or survival of injured renal cells. This review proposes possible pathophysiological mechanisms by which altered caveolin-1 expression and localization may affect renal cell survival following oxidative stress.