953 resultados para Incident waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly developed computer model, which solves the horizontal two-dimensional Boussinesq equations using a total variation diminishing Lax-Wendroff scheme, has been used to study the runup of solitary waves, with various heights, on idealized conical islands consisting of side slopes of different angles. This numerical model has first been validated against high-quality laboratory measurements of solitary wave runups on a uniform plane slope and on an isoliated conical island, with satisfactory agreement being achieved. An extensive parametric study concerning the effects of the wave height and island slope on the solitary wave runup has subsequently been carried out. Strong wave shoaling and diffraction effects have been observed for all the cases investigated. The relationship between the runup height and wave height has been obtained and compared with that for the case on uniform plane slopes. It has been found that the runup on a conical island is generally lower than that on a uniform plane slope, as a result of the two-dimensional effect. The correlation between the runup with the side slope of an island has also been identified, with higher runups on milder slopes. This comprehensive study on the soliton runup on islands is relevant to the protection of coastal and inland regions from extreme wave attacks. © the Coastal Education & Research Foundation 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique is proposed to magnetize bulk superconductors, which has the potential to build up strong superconducting magnets. Instead of conventionally using strong magnetic pulses, periodical magnetic waves with strength as low as that of rare-earth magnets are applied. These magnetic waves travel from the periphery to the center of a bulk superconductor and become trapped little by little. In this way, bulk superconductors can gradually be magnetized. To generate these magnetic waves, a thermally actuated magnet was developed, which is constructed by a heating/cooling switch system, a rare-earth bulk magnet, and a Gadolinium (Gd) bulk. The heating/cooling switch system controls the temperature of the Gd bulk, which, along with the rare-earth magnet underneath, can transform thermal signals into magnetic waves. The modeling results of the thermally actuated magnet show that periodical magnetic waves can effectively be generated by applying heating and cooling pulses in turn. A YBCO bulk was tested in liquid nitrogen under the magnetic waves, and a notable accumulation of magnetic flux density was observed. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low attenuation of Sezawa modes operating at GHz frequencies in ZnO/GaAs systems immersed in liquid helium has been observed. This unexpected behaviour for Rayleigh-like surface acoustic waves (SAWs) is explained in terms of the calculated depth profiles of their acoustic Poynting vectors. This analysis allows reproduction of the experimental dispersion of the attenuation coefficient. In addition, the high attenuation of the Rayleigh mode is compensated by the strengthening provided by the ZnO layer. The introduction of the ZnO film will enable the operation of SAW-driven single-photon sources in GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the propagation of acoustic waves along a cylindrical duct carrying radially sheared axial mean flow, in which the duct radius is allowed to vary slowly along the axis. In previous work [A.J. Cooper & N. Peake, Journal of Fluid Mechanics 445 (2001) 207-234.] radially sheared axial mean flow with nonzero swirl in a slowly varying duct was considered, but in this paper we set the swirl to zero, thereby allowing simplification of the calculations of both the mean and unsteady flows. In this approach the acoustic wavenumber and corresponding eigenfunction are determined locally, while the wave amplitude is found by solving an evolution equation along the duct. Sample results are presented, including a case in which, perhaps surprisingly, the number of cut-on modes increases as the duct radius decreases. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A separated oblique shock reflection on the floor of a rectangular cross-section wind tunnel has been investigated at M=2.5. The study aims to determine if and how separations occurring in the corners influence the main interaction as observed around the centreline of the floor. By changing the size of the corner separations through localised suction and small corner obstructions it was shown that the shape of the separated region in the centre was altered considerably. The separation length along the floor centreline was also modified by changes to the corner separation. A simple physical model has been proposed to explain the coupling between these separated regions based on the existence of compression or shock waves caused by the displacement effect of corner separation. These corner shocks alter the adverse pressure gradient imposed on the boundary-layer elsewhere which can lead to local reductions or increases of separation length. It is suggested that a typical oblique shock wave/boundary-layer interaction in rectangular channels features several zones depending on the relative position of the corner shocks and the main incident shock wave. Based on these findings the dependence of centre-line separation length on effective wind tunnel width is hypothesised. This requires further verification through experiments or computation. © 2013 by H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the effects of varying the tunnel width to height ratio on the shock boundary layer interac-tion of an incident oblique shock with a turbulent boundary layer. The computational domain is a simpli-fied representation of typical wind tunnel experiments; the top wall of the tunnel is not modeled; only the flow conditions imposed by the shock are modeled on the top of the computational domain. A hy-pothesis of the expected effect of width to height ratio is presented and tested computationally. All flows are found to be three dimensional for the single shock strength range of width to height ratios considered. The effect of tunnel width is a function of the boundary layer thickness which decreases the effective width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High frequency Rayleigh and Sezawa modes propagating in the ZnO/GaAs system capable of operating immersed in liquid helium have been engineered. In the case of the Rayleigh mode, the strong attenuation produced by the liquid is counteracted by the strengthening of the mode induced by the ZnO. However, in the case of the Sezawa modes, the attenuation is strongly reduced taking advantage of the depth profile of their acoustic Poynting vectors, that extend deeper into the layered system, reducing the energy radiated into the fluid. Thus, both tailored modes will be suitable for acoustically-driven single-electron and single-photon devices in ZnO-coated GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.