953 resultados para Immune Function
Resumo:
It has been suggested that anergic T cells may not be only inert cells but may rather play an active role, for example by regulating immune responses. We have previously reported the existence of “anergic” IL-10-producing CD4+ T cells generated in vivo by continuous antigenic stimulation. Using a gene transfer system where the antigen recognized by such T cells is expressed in skeletal muscle by two different DNA viral vectors, we show that these cells not only remain tolerant toward their cognate antigen but also can suppress the immune response of naïve T cells against the immunogenic adenoviral proteins. Furthermore, they can completely inhibit tissue destruction that takes place as a result of an immune response. The system presented here is unique in that the T cells have been anergized in vivo, their antigen specificity and functional status are known, and the amount, form, and timing of antigen expression can be manipulated. This model will therefore permit us to carefully dissect the mechanisms by which these anergic T cells regulate the priming and/or effector function of naïve T cells.
Resumo:
Dendritic cells (DC) are crucial for the induction of immune responses and thus an inviting target for modulation by pathogens. We have previously shown that Plasmodium falciparum-infected erythrocytes inhibit the maturation of DCs. Intact P. falciparum-infected erythrocytes can bind directly to CD36 and indirectly to CD51. It is striking that these receptors, at least in part, also mediate the phagocytosis of apoptotic cells. Here we show that antibodies against CD36 or CD51, as well as exposure to early apoptotic cells, profoundly modulate DC maturation and function in response to inflammatory signals. Although modulated DCs still secrete tumor necrosis factor-α, they fail to activate T cells and now secrete IL-10. We therefore propose that intact P. falciparum-infected erythrocytes and apoptotic cells engage similar pathways regulating DC function. These findings may have important consequences for the treatment of malaria and may suggest strategies for modulating pathological immune responses in autoimmune diseases.
Fas (CD95) expression and death-mediating function are induced by CD4 cross-linking on CD4+ T cells.
Resumo:
The CD4 receptor contributes to T-cell activation by coligating major histocompatibility complex class II on antigen presenting cells with the T-cell receptor (TCR)/CD3 complex, and triggering a cascade of signaling events including tyrosine phosphorylation of intracellular proteins. Paradoxically, CD3 cross-linking prior to TCR stimulation results in apoptotic cell death, as does injection of anti-CD4 antibodies in vivo of CD4 ligation by HIV glycoprotein (gp) 120. In this report we investigate the mechanism by which CD4 cross-linking induces cell death. We have found that CD4 cross-linking results in a small but rapid increase in levels of cell surface Fas, a member of the tumor necrosis factor receptor family implicated in apoptotic death and maintenance of immune homeostasis. Importantly, CD4 cross-linking triggered the ability of Fas to function as a death molecule. Subsequent to CD4 cross-linking, CD4+ splenocytes cultured overnight became sensitive to Fas-mediated death. Death was Fas-dependent, as demonstrated by cell survival in the absence of plate-bound anti-Fas antibody, and by the lack of CD4-induced death in cells from Fas-defective lymphoproliferative (lpr) mice. We demonstrate here that CD4 regulates the ability of Fas to induce cell death in Cd4+ T cells.
Resumo:
L'athérosclérose est une maladie inflammatoire chronique caractérisée par l'accumulation de cholestérol dans la paroi artérielle et associée à une réponse immunitaire anormale dans laquelle les macrophages jouent un rôle important. Récemment, il a été démontré que les vaisseaux lymphatiques jouent un rôle primordial dans le transport inverse du cholestérol (Martel et al. JCI 2013). L’objectif global de mon stage de maîtrise a été de mieux caractériser la dysfonction lymphatique associée à l’athérosclérose, en étudiant de plus près l’origine physiologique et temporelle de ce mauvais fonctionnement. Notre approche a été d’étudier, depuis l’initiation de l’athérosclérose jusqu’à la progression d’une lésion athérosclérotique tardive, la physiologie des deux constituants principaux qui forment les vaisseaux lymphatiques : les capillaires et collecteurs lymphatiques. En utilisant comme modèle principal des souris Ldlr-/-; hApoB100+/+, nous avons pu démontrer que la dysfonction lymphatique est présente avant même l’apparition de l’athérosclérose, et que cette dysfonction est principalement associée avec un défaut au niveau des vaisseaux collecteurs, limitant ainsi le transport de la lymphe des tissus périphériques vers le sang. De plus, nous avons démontré pour la première fois l’expression du récepteur au LDL par les cellules endothéliales lymphatiques. Nos travaux subséquents démontrent que ce défaut de propulsion de la lymphe pourrait être attribuable à l’absence du récepteur au LDL, et que la dysfonction lymphatique observée précocement dans l’athérosclérose peut être limitée par des injections systémiques de VEGF (vascular endothelial growth factor) –C. Ces résultats suggèrent que la caractérisation fonctionnelle de la capacité de pompage des vaisseaux collecteurs serait une condition préalable à la compréhension de l'interaction entre la fonction du système lymphatique et la progression de l'athérosclérose. Ultimement, nos travaux nous ont amené à considérer de nouvelles cibles thérapeutiques potentielles dans la prévention et le traitement de l’athérosclérose.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Th2-associated factors such as IL-4 are involved in both the development of Th2 responses (via modulating Th2 cell differentiation) and in the effector phase of Th2 responses (via modulating macrophage activation). The IL-1 receptor-like protein ST2 (T1, Fit-1, or DER4) is expressed as a membrane-bound (ST2L) or secreted form (sST2), and has been clearly implicated as a regulator of both the development and effector phases of Th2-type responses. Here we analyze the mechanisms and therapeutic implications of the unique ability of ST2 to promote development and function of type 2 helper T cells through a positive feedback loop, as well as to act as a negative feedback modulator of macrophage pro-inflammatory function. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The initiation of graft-vs-host disease (GVHD) after stem cell transplantation is dependent on direct Ag presentation by host APCs, whereas the effect of donor APC populations is unclear. We studied the role of indirect Ag presentation in allogenic T cell responses by adding populations of cytokine-expanded donor APC to hemopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 ligand molecule) and G-CSF expanded myeloid dendritic cells (DC), plasmacytoid DC, and a novel granulocyte-monocyte precursor population (GM) that differentiate into class II+,CD80/CD86(+),CD40(-) APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells promoted transplant tolerance by MHC class II-restricted generation of IL-10-secreting, Ag-specific regulatory T cells. Importantly, although GM cells abrogated GVHD, graft-vs-leukemia effects were preserved. Thus, a population of cytokine-expanded GM precursors function as regulatory APCs, suggesting that G-CSF derivatives may have application in disorders characterized by a loss of self-tolerance.
Resumo:
We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins-key functional bio-macromolecular systems responsible for photoprotection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.
Resumo:
A T cell antigen receptor (TCR) transmembrane sequence derived peptide (CP) has been shown to inhibit T cell activation both in vitro and in vivo at the membrane level of the receptor signal transduction. To examine the effect of sugar or lipid conjugations on CP function, we linked CP to 1-aminoglucosesuccinate (GS), N-myristate (MYR), mono-di-tripalmitate (LP1, LP2, or LP3), and a lipoamino acid (LA) and examined the effects of these compounds on T cell activation in vitro and by using a rat model of adjuvant-induced arthritis, in vivo. In vitro, antigen presentation results demonstrated that lipid conjugation enhanced CP's ability to lower IL-2 production from 56.99% +/- 15.69 S.D. observed with CP, to 12.08% +/- 3.34 S.D. observed with LA. The sugar conjugate GS resulted in only a mild loss of in vitro activity compared to CP (82.95% +/- 14.96 S.D.). In vivo, lipid conjugation retarded the progression of adjuvant-induced arthritis by approximately 50%, whereas the sugar. conjugated CP, GS, almost completely inhibited the progression of arthritis. This study demonstrates that hydrophobic peptide activity is markedly enhanced in vitro and in vivo by conjugation to lipids or sugars. This may have practical applications in drug delivery and bioavailability of hydrophobic peptides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Mannose-binding lectin (MBL) is an innate immune system pattern recognition molecule that kills a wide range of pathogens via the lectin complement pathway. MBL deficiency is associated with severe infection but the best measure of this deficiency is undecided. We investigated the influence of MBL functional deficiency on the development of sepsis in 195 adult patients, 166 of whom had bloodstream infection and 35 had pneumonia. Results were compared with 236 blood donor controls. MBL function (C4b deposition) and levels were measured by enzyme-linked immunosorbent assay. Using receiver-operator characteristics of MBL function in healthy controls, we identified a level of < 0.2 U mu L-1 as a highly discriminative marker of low MBL2 genotypes. Median MBL function was lower in sepsis patients (0.18 U mu L-1) than in controls (0.48 U mu L-1, P < 0.001). MBL functional deficiency was more common in sepsis patients than controls (P < 0.001). MBL functional deficient patients had significantly higher sequential organ failure assessment (SOFA) scores and higher MBL function and levels were found in patients with SOFA scores predictive of good outcome. Deficiency of MBL function appears to be associated with bloodstream infection and the development of septic shock. High MBL levels may be protective against severe sepsis. © 2006 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved.
Resumo:
Mucosal and serum antibody responses were studied in sibling barramundi (Lates calcarifer) acclimated in either seawater or freshwater following vaccination by intraperitoneal injection or direct immersion in an inactivated Streptococcus iniae vaccine. As expected, route of vaccination had a marked effect on immune response, with direct immersion resulting in low serum antibody levels against S. iniae by ELISA detected 21 days post vaccination at 26 degrees C, whilst a significant response was detected in mucus. A strong specific antibody response was detected in both mucus and serum 21 days following intraperitoneal injection. Fish acclimated in seawater prior to vaccination showed a markedly higher specific mucosal antibody response than sibling fish acclimated in freshwater, regardless of the route of vaccination, whilst the serum antibody response was not affected by salinity. Both mucosal and serum antibodies from fish in seawater and freshwater were capable of binding antigen at salinities similar to full strength seawater in a modified ELISA assay. These results indicate that this euryhaline fish species is riot only able to mount significant specific antibody response in cutaneous mucus, but that these antibodies will function in the marine environment. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell-surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs