883 resultados para Image interpretation, Computer-assisted


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal image analysis and computer assisted intervention have emerged as new and independent research areas, due to the importance of treatment of spinal diseases, increasing availability of spinal imaging, and advances in analytics and navigation tools. Among others, multiple modality spinal image analysis and spinal navigation tools have emerged as two keys in this new area. We believe that further focused research in these two areas will lead to a much more efficient and accelerated research path, avoiding detours that exist in other applications, such as in brain and heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario. METHODS In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process. RESULTS Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of [Formula: see text]. CONCLUSIONS We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Treatment of vascular malformations requires the placement of a needle within vessels which may be as small as 1 mm, with the current state of the art relying exclusively on two-dimensional fluoroscopy images for guidance. We hypothesize that the combination of stereotactic image guidance with existing targeting methods will result in faster and more reproducible needle placements, as well as reduced radiationexposure, when compared to standard methods based on fluoroscopy alone. METHODS The proposed navigation approach was evaluated in a phantom experiment designed to allow direct comparison with the conventional method. An anatomical phantom of the left forearm was constructed, including an independent control mechanism to indicate the attainment of the target position. Three interventionalists (one inexperienced, two of them frequently practice the conventional fluoroscopic technique) performed 45 targeting attempts utilizing the combined and 45 targeting attempts utilizing the standard approaches. RESULTS In all 45 attempts, the users were able to reach the target when utilizing the combined approach. In two cases, targeting was stopped after 15 min without reaching the target when utilizing only the C-arm. The inexperienced user was faster when utilizing the combined approach and applied significantly less radiation than when utilizing the conventional approach. Conversely, both experienced users were faster when using the conventional approach, in one case significantly so, with no significant difference in radiation dose when compared to the combined approach. CONCLUSIONS This work presents an initial evaluation of a combined navigation fluoroscopy targeting technique in a phantom study. The results suggest that, especially for inexperienced interventionalists, navigation may help to reduce the time and the radiation dose. Future work will focus on the improvement and clinical evaluation of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic instrument tracking systems are an essential component in image-guided interventions and offer new possibilities to improve and automate objective assessment methods of surgical skills. In this study we present our system design to apply a third generation optical pose tracker (Micron- Tracker®) to laparoscopic practice. A technical evaluation of this design is performed in order to analyze its accuracy in computing the laparoscopic instrument tip position. Results show a stable fluctuation error over the entire analyzed workspace. The relative position errors are 1.776±1.675 mm, 1.817±1.762 mm, 1.854±1.740 mm, 2.455±2.164 mm, 2.545±2.496 mm, 2.764±2.342 mm, 2.512±2.493 mm for distances of 50, 100, 150, 200, 250, 300, and 350 mm, respectively. The accumulated distance error increases with the measured distance. The instrument inclination covered by the system is high, from 90 to 7.5 degrees. The system reports a low positional accuracy for the instrument tip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the astroglial and neuronal responses in subtelencephalic structures, following a bilateral ablation of the telencephalon in the Columba livia pigeons. Control birds received a sham operation. Four months later the birds were sacrificed and their brains processed for glial fribillary acid protein (GFAP) and neurofilament immunohistochemistry, markers for astrocytes and neurons, respectively. Computer-assisted image analysis was employed for quantification of the immunoreactive labeling in the nucleus rotundus (N.Rt) and the optic tectum (OT) of the birds. An increased number of GFAP immunoreactive astrocytes were found in several subregions of the N.Rt (p .001), as well as in layers 1, 2cd, 3, and 6 of the OT (p .001) of the lesioned animals. Neurofilament immunoreactivity decreased massively in the entire N.Rt of the lesioned birds; however, remaining neurons with healthy aspect showing large cytoplasm and ramified branches were detected mainly in the periphery of the nucleus. In view of the recently described paracrine neurotrophic properties of the activated astrocytes, the data of the present study may suggest a long-lasting neuroglial interaction in regions of the lesioned bird brain far from injury. Such events may trigger neuronal plasticity in remaining brain structures that may lead spontaneous behavior recovery as the one promoted here even after a massive injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements in civil engineering load tests usually require considerable time and complex procedures. Therefore, measurements are usually constrained by the number of sensors resulting in a restricted monitored area. Image processing analysis is an alternative way that enables the measurement of the complete area of interest with a simple and effective setup. In this article photo sequences taken during load displacement tests were captured by a digital camera and processed with image correlation algorithms. Three different image processing algorithms were used with real images taken from tests using specimens of PVC and Plexiglas. The data obtained from the image processing algorithms were also compared with the data from physical sensors. A complete displacement and strain map were obtained. Results show that the accuracy of the measurements obtained by photogrammetry is equivalent to that from the physical sensors but with much less equipment and fewer setup requirements. © 2015Computer-Aided Civil and Infrastructure Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effect of the inhibition of the angiotensin-converting enzyme on the collagen matrix (CM) of the heart of newborn spontaneously hypertensive rats (SHR) during embryonic development. METHODS: The study comprised the 2 following groups of SHR (n=5 each): treated group - rats conceived from SHR females treated with enalapril maleate (15 mg. kg-1.day-1) during gestation; and nontreated group - offspring of nontreated females. The newborns were euthanized within the first 24 hours after birth and their hearts were removed and processed for histological study. Three fields per animal were considered for computer-assisted digital analysis and determination of the volume densities (Vv) of the nuclei and CM. The images were segmented with the aid of Image Pro Plus® 4.5.029 software (Media Cybernetics). RESULTS: No difference was observed between the treated and nontreated groups in regard to body mass, cardiac mass, and the relation between cardiac and body mass. A significant reduction in the Vv[matrix] and a concomitant increase in the Vv[nuclei] were observed in the treated group as compared with those in the nontreated group. CONCLUSION: The treatment with enalapril of hypertensive rats during pregnancy alters the collagen content and structure of the myocardium of newborns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, multi-atlas fusion methods have gainedsignificant attention in medical image segmentation. Inthis paper, we propose a general Markov Random Field(MRF) based framework that can perform edge-preservingsmoothing of the labels at the time of fusing the labelsitself. More specifically, we formulate the label fusionproblem with MRF-based neighborhood priors, as an energyminimization problem containing a unary data term and apairwise smoothness term. We present how the existingfusion methods like majority voting, global weightedvoting and local weighted voting methods can be reframedto profit from the proposed framework, for generatingmore accurate segmentations as well as more contiguoussegmentations by getting rid of holes and islands. Theproposed framework is evaluated for segmenting lymphnodes in 3D head and neck CT images. A comparison ofvarious fusion algorithms is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To understand the reasons for differences in the delineation of target volumes between physicians. MATERIAL AND METHODS: 18 Swiss radiooncology centers were invited to delineate volumes for one prostate and one head-and-neck case. In addition, a questionnaire was sent to evaluate the differences in the volume definition (GTV [gross tumor volume], CTV [clinical target volume], PTV [planning target volume]), the various estimated margins, and the nodes at risk. Coherence between drawn and stated margins by centers was calculated. The questionnaire also included a nonspecific series of questions regarding planning methods in each institution. RESULTS: Fairly large differences in the drawn volumes were seen between the centers in both cases and also in the definition of volumes. Correlation between drawn and stated margins was fair in the prostate case and poor in the head-and-neck case. The questionnaire revealed important differences in the planning methods between centers. CONCLUSION: These large differences could be explained by (1) a variable knowledge/interpretation of ICRU definitions, (2) variable interpretations of the potential microscopic extent, (3) difficulties in GTV identification, (4) differences in the concept, and (5) incoherence between theory (i.e., stated margins) and practice (i.e., drawn margins).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The optimal coronary MR angiography sequence has yet to be determined. We sought to quantitatively and qualitatively compare four coronary MR angiography sequences. SUBJECTS AND METHODS. Free-breathing coronary MR angiography was performed in 12 patients using four imaging sequences (turbo field-echo, fast spin-echo, balanced fast field-echo, and spiral turbo field-echo). Quantitative comparisons, including signal-to-noise ratio, contrast-to-noise ratio, vessel diameter, and vessel sharpness, were performed using a semiautomated analysis tool. Accuracy for detection of hemodynamically significant disease (> 50%) was assessed in comparison with radiographic coronary angiography. RESULTS: Signal-to-noise and contrast-to-noise ratios were markedly increased using the spiral (25.7 +/- 5.7 and 15.2 +/- 3.9) and balanced fast field-echo (23.5 +/- 11.7 and 14.4 +/- 8.1) sequences compared with the turbo field-echo (12.5 +/- 2.7 and 8.3 +/- 2.6) sequence (p < 0.05). Vessel diameter was smaller with the spiral sequence (2.6 +/- 0.5 mm) than with the other techniques (turbo field-echo, 3.0 +/- 0.5 mm, p = 0.6; balanced fast field-echo, 3.1 +/- 0.5 mm, p < 0.01; fast spin-echo, 3.1 +/- 0.5 mm, p < 0.01). Vessel sharpness was highest with the balanced fast field-echo sequence (61.6% +/- 8.5% compared with turbo field-echo, 44.0% +/- 6.6%; spiral, 44.7% +/- 6.5%; fast spin-echo, 18.4% +/- 6.7%; p < 0.001). The overall accuracies of the sequences were similar (range, 74% for turbo field-echo, 79% for spiral). Scanning time for the fast spin-echo sequences was longest (10.5 +/- 0.6 min), and for the spiral acquisitions was shortest (5.2 +/- 0.3 min). CONCLUSION: Advantages in signal-to-noise and contrast-to-noise ratios, vessel sharpness, and the qualitative results appear to favor spiral and balanced fast field-echo coronary MR angiography sequences, although subjective accuracy for the detection of coronary artery disease was similar to that of other sequences.