946 resultados para INSULIN EXPRESSION
Resumo:
Mice that carry the lethal yellow (Ay) or viable yellow (Avy) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant "obese yellow" a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants.
Resumo:
The transcription of genes encoding gluconeogenic enzymes is tightly regulated during the perinatal period. These genes are induced by glucagon (cAMP) and glucocorticoids and repressed by insulin. To address the role of cAMP and glucocorticoids in the physiological activation of genes encoding gluconeogenic enzymes in the perinatal period, transgenic mice have been generated with chimeric constructs containing the reporter gene lacZ under the control of hormone response elements. The activity of the transgene is restricted to the liver by the presence of the enhancers from the alpha-fetoprotein gene and its transcription is driven by a promoter that contains a TATA box linked to either cAMP response elements (CREs) or glucocorticoid response elements (GREs). We demonstrate cAMP and glucocorticoid regulation, liver-specific expression, and perinatal activation of the reporter gene. These data indicate that the CRE and GRE are, independently, necessary and sufficient to mediate perinatal gene activation. Perinatal activation was not impaired when a CRE reporter transgene was assayed in mice that contain a targeted mutation of the CRE-binding protein (CREB) gene, providing further evidence for functional redundancy among the members of the CREB/ATF gene family.
Resumo:
Rab3A is a small GTP-binding protein expressed predominantly in brain and neuroendocrine cells, in which it is associated with synaptic and synaptic-like vesicles, respectively. Here we report that adult mouse fat cells and 3T3-L1 adipocytes also express Rab3A mRNA and protein. They do not express synaptophysin, an abundant protein in synaptic vesicles or synaptic-like vesicles. The amount of Rab3A mRNA and protein, like that of the highly homologous isoform Rab3D, increases severalfold during differentiation of 3T3-L1 fibroblasts into mature adipocytes. In fat cells, most Rab3D and Rab3A protein is bound to membrane, irrespective of insulin addition. Rab3A and Rab3D are localized in different subcellular compartments, since about half of the Rab3A, but none of the Rab3D, is associated with a low-density organelle(s). Rab3D and Rab3A may be involved in different pathways of regulated exocytosis in adipocytes. Moreover, in adipocytes Rab3A may define an exocytic organelle that is different from synaptic vesicles or synaptic-like microvesicles found in neuronal and endocrine cells.
Resumo:
High-fat intake leading to obesity contributes to the development of non-insulin-dependent diabetes mellitus (NIDDM, type 2). Similarly, mice fed a high-fat (safflower oil) diet develop defective glycemic control, hyperglycemia, and obesity. To assess the effect of a modest increase in the expression of GLUT4 (the insulin-responsive glucose transporter) on impaired glycemic control caused by fat feeding, transgenic mice harboring a GLUT4 minigene were fed a high-fat diet. Low-level tissue-specific (heart, skeletal muscle, and adipose tissue) expression of the GLUT4 minigene in transgenic mice prevented the impairment of glycemic control and accompanying hyperglycemia, but not obesity, caused by fat feeding. Thus, a small increase (< or = 2-fold) in the tissue level of GLUT4 prevents a primary symptom of the diabetic state in a mouse model, suggesting a possible target for intervention in the treatment of NIDDM.
Resumo:
SPC2 and SPC3 are two members of a family of subtilisin-related proteases which play essential roles in the processing of prohormones into their mature forms in the pancreatic B cell and many other neuroendocrine cells. To investigate the phylogenetic origins and evolutionary functions of SPC2 and SPC3 we have identified and cloned cDNAs encoding these enzymes from amphioxus (Branchiostoma californiensis), a primitive chordate. The amino acid sequence of preproSPC2 contains 689 aa and is 71% identical to human SPC2. In contrast, amphioxus prproSPC3 consists of 774 aa and exhibits 55% identity to human SPC3. These results suggest that the primary structure of SPC2 has been more highly conserved during evolution than that of SPC3. To further investigate the function(s) of SPC2 and SPC3 in amphioxus, we have determined the regional expression of these genes by using a reverse transcriptase-linked polymerase chain reaction (RT-PCR) assay. Whole amphioxus was dissected longitudinally into four equal-length segments and RNA was extracted. Using RT-PCR to simultaneously amplify SPC2 and SPC3 DNA fragments, we found that the cranial region (section 1) expressed equal amounts of SPC2 and SPC3 mRNAs, whereas in the caudal region (section 4) the SPC2-to-SPC3 ratio was 5:1. In the mid-body sections 2 and 3 the SPC2-to-SPC3 ratio was 1:5. By RT-PCR we also determined that amphioxus ILP, a homologue of mammalian insulin/insulin-like growth factor, was expressed predominately in section 3. These results suggest that the relative levels of SPC2 and SPC3 mRNAs are specifically regulated in various amphioxus tissues. Furthermore, the ubiquitous expression of these mRNAs in the organism indicates that they are involved in the processing of other precursor proteins in addition to proILP.
Resumo:
BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.
Resumo:
The role of growth hormone (GH) in embryonic growth is controversial, yet preimplantation embryos express GH, insulin-like growth factor I (IGF-I) and their receptors. In this study, addition of bovine GH doubled the proportion of two-cell embryos forming blastocysts and increased by about 25% the number of cells in those blastocysts with a concentration-response curve showing maximal activity at 1 pg bovine GH ml(-1), with decreasing activity at higher and lower concentrations. GH increased the number of cells in the trophectoderm by 25%, but did not affect the inner cell mass of blastocysts. Inhibition of cell proliferation by anti-GH antiserum indicated that GH is a potent autocrine or paracrine regulator of the number of trophectoderm cells in vivo. Type 1 IGF receptors (IGF1R) were localized to cytoplasmic vesicles and plasma membrane in the apical domains of uncompacted and compacted eight-cell embryos, but were predominantly apparent in cytoplasmic vesicles of the trophectoderm cells of the blastocyst, similar to GH receptors. Studies using alphaIR3 antiserum which blocks ligand activation of IGF1R, showed that IGF1R participate in the autocrine or paracrine regulation of the number of cells in the inner cell mass by an endogenous IGF-I-IGF1R pathway. However, alphaIR3 did not affect GH stimulation of the number of trophectoderm cells. Therefore, CH does not use secondary actions via embryonic IGF-I to modify the number of blastocyst cells. This result indicates that GH and IGF-I act independently. GH may selectively regulate the number of trophectoderm cells and thus implantation and placental growth. Embryonic GH may act in concert with IGF-I, which stimulates proliferation in the inner cell mass, to optimize blastocyst development.
Resumo:
Pseudomonas aeruginosa is an important pathogen in immunocompromised patients and secretes a diverse set of virulence factors that aid colonization and influence host cell defenses. An important early step in the establishment of infection is the production of type III-secreted effectors translocated into host cells by the bacteria. We used cDNA microarrays to compare the transcriptomic response of lung epithelial cells to P. aeruginosa mutants defective in type IV pili, the type III secretion apparatus, or in the production of specific type III-secreted effectors. Of the 18,000 cDNA clones analyzed, 55 were induced or repressed after 4 It of infection and could be classified into four different expression patterns. These include (i) host genes that are induced or repressed in a type III secretion-independent manner (32 clones), (ii) host genes induced specifically by ExoU (20 clones), and (iii) host genes induced in an ExoU-independent but type III secretion dependent manner (3 clones). In particular, ExoU was essential for the expression of immediate-early response genes, including the transcription factor c-Fos. ExoU-dependent gene expression was mediated in part by early and transient activation of the AN transcription factor complex. In conclusion, the present study provides a detailed insight into the response of epithelial cells to infection and indicates the significant role played by the type III virulence mechanism in the initial host response.
Resumo:
The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.
Resumo:
The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.
Resumo:
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.
Resumo:
The snake venom group C prothrombin activators contain a number of components that enhance the rate of prothrombin activation. The cloning and expression of full-length cDNA for one of these components, an activated factor X (factor Xa)-like protease from Pseudonaja textilis as well as the generation of functional chimeric constructs with procoagulant activity were described. The complete cDNA codes for a propeptide, light chain, activation peptide (AP) and heavy chain related in sequence to mammalian factor X. Efficient expression of the protease was achieved with constructs where the AP was deleted and the cleavage sites between the heavy and light chains modified, or where the AP was replaced with a peptide involved in insulin receptor processing. In human kidney cells (H293F) transfected with these constructs, up to 80% of the pro-form was processed to heavy and light chains. Binding of the protease to barium citrate and use of specific antibodies demonstrated that gamma-carboxylation of glutamic acid residues had occurred on the light chain in both cases, as observed in human factor Xa and the native P. textilis protease. The recombinant protease caused efficient coagulation of whole citrated blood and citrated plasma that was enhanced by the presence of Ca2+. This study identified the complete cDNA sequence of a factor Xa-like protease from P. textilis and demonstrated for the first time the expression of a recombinant form of P. textilis protease capable of blood coagulation.
Resumo:
Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.
Resumo:
Objective:. There is evidence from in vitro studies that fatty acids can inhibit glucose uptake in liver. However, it is uncertain whether this happens in vivo when the liver is exposed to high levels of glucose and insulin, in combination with fatty acids, after a mixed meal. This study determined the effects of a combination of fatty acids and insulin on glucokinase (GK) activity and glycolysis in primary rat hepatocytes. Methods: Hepatocytes were cultured with 15 mM glucose and 2 or 10 nM insulin in combination with the fatty acids palmitate, oleate, linoleate, eicosapentaenoic acid, or docosahexaenoic acid. Total GK activity and the proportion of GK in the,active, unbound state were measured to determine the effect of fatty acid on the activity and cellular localization of GK. Glucose phosphorylation and glycolysis were measured in intact cells. Lactate and pyruvate synthesis and the accumulation of ketone bodies were also estimated. Results: Palmitate and eicosapentaenoic acid lowered total GK activity in the presence of 2 nM insulin, but not with 10 nM insulin. In contrast, oleate, linoleate, and docosahexaenoic acid did not alter GK activity. None of the fatty acids tested inhibited glucose phosphorylation or glycolysis in intact rat hepatocytes. In addition, GK activity was unaffected by insulin concentration. Conclusion: Some fatty acids can act to inhibit GK activity in primary hepatocytes. However, there was no,evidence that this decrease in GK activity impaired glucose phosphorylation or glycolysis. Glucose and high concentrations of insulin, which promote glucose uptake, appear to counteract any inhibitory action of fatty acids. Therefore, the presence of fatty acids in a normal mixed meal is likely to have little effect on the capacity of the liver to take up, phosphorylate, and oxidize glucose. (C) 2006 Elsevier Inc. All rights reserved.