986 resultados para INFRARED-ABSORPTION
Resumo:
This paper reviews the current state in the application of infrared methods, particularly mid-infrared (mid-IR) and near infrared (NIR), for the evaluation of the structural and functional integrity of articular cartilage. It is noted that while a considerable amount of research has been conducted with respect to tissue characterization using mid-IR, it is almost certain that full-thickness cartilage assessment is not feasible with this method. On the contrary, the relatively more considerable penetration capacity of NIR suggests that it is a suitable candidate for full-thickness cartilage evaluation. Nevertheless, significant research is still required to improve the specificity and clinical applicability of the method if we are going to be able to use it for distinguishing between functional and dysfunctional cartilage.
Resumo:
Early-stage treatments for osteoarthritis are attracting considerable interest as a means to delay, or avoid altogether, the pain and lack of mobility associated with late-stage disease, and the considerable burden that it places on the community. With the development of these treatments comes a need to assess the tissue to which they are applied, both in trialling of new treatments and as an aid to clinical decision making. Here, we measure a range of mechanical indentation, ultrasound and near-infrared spectroscopy parameters in normal and osteoarthritic bovine joints in vitro to describe the role of different physical phenomena in disease progression, using this as a basis to investigate the potential value of the techniques as clinical tools. Based on 72 samples we found that mechanical and ultrasound parameters showed differences between fibrillated tissue, macroscopically normal tissue in osteoarthritic joints, and normal tissue, yet did were unable to differentiate degradation beyond that which was visible to the naked eye. Near-infrared spectroscopy showed a clear progression of degradation across the visibly normal osteoarthritic joint surface and as such, was the only technique considered useful for clinical application.
Resumo:
Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site.
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The bright blue minerals cavansite and pentagonite, a calcium vanadium silicate Ca(V4+O)Si4O10.4H2O, have been studied by UV–Visible, Raman and infrared spectroscopy. Cavansite shows an open porous structure with very small micron sized holes. Strong UV–Visible absorption bands are observed at around 403, 614 and 789 nm for cavansite and pentagonite. The Raman spectrum of cavansite is dominated by an intense band at 981 cm -1 and pentagonite by a band at 971 cm-1 attributed to the stretching vibrations of (SiO3)n units. Cavansite is characterised by two intense bands at 574 and 672 cm-1 whereas pentagonite by a single band at 651 cm-1. The Raman spectrum of cavansite in the hydroxyl stretching region shows bands at 3504, 3546, 3577, 3604 and 3654 cm-1 whereas pentagonite is a single band at 3532 cm_1. These bands are attributed to water coordinated to calcium and vanadium. XPS studies show that bond energy of oxygen in oxides is 530 eV, and in hydroxides -531.5 eV and for water -533.5 eV. XPS studies show a strong peak at 531.5 eV for cavansite, indicating some OH units in the structure of cavansite.
Resumo:
A ground-based tracking camera and co-aligned slit-less spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth's atmosphere in June 2010. Good quality spectra were obtained that showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the black body nature of the radiation concluded that the peak average temperature of the surface was about (3100±100) K.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
Thermal-infrared imagery is relatively robust to many of the failure conditions of visual and laser-based SLAM systems, such as fog, dust and smoke. The ability to use thermal-infrared video for localization is therefore highly appealing for many applications. However, operating in thermal-infrared is beyond the capacity of existing SLAM implementations. This paper presents the first known monocular SLAM system designed and tested for hand-held use in the thermal-infrared modality. The implementation includes a flexible feature detection layer able to achieve robust feature tracking in high-noise, low-texture thermal images. A novel approach for structure initialization is also presented. The system is robust to irregular motion and capable of handling the unique mechanical shutter interruptions common to thermal-infrared cameras. The evaluation demonstrates promising performance of the algorithm in several environments.
Resumo:
Road safety barriers are used to minimise the severity of road accidents and protect lives and property. There are several types of barrier in use today. This paper reports the initial phase of research carried out to study the impact response of portable water-filled barrier (PWFB) which has the potential to absorb impact energy and hence provide crash mitigation under low to moderate speeds. Current research on the impact and energy absorption capacity of water-filled road safety barriers is limited due to the complexity of fluid-structure interaction under dynamic impact. In this paper, a novel fluid-structure interaction method is developed based on the combination of Smooth Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing phenomenon of water inside a PWFB is investigated to explore the energy absorption capacity of water under dynamic impact. It was found that water plays an important role in energy absorption. The coupling analysis developed in this paper will provide a platform to further the research in optimising the behaviour of the PWFB. The effect of the amount of water on its energy absorption capacity is investigated and the results have practical applications in the design of PWFBs.
Resumo:
An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.