973 resultados para IMMUNE ACTIVATION
Resumo:
T cell activation is the final step in a complex pathway through which pathogen-derived peptide fragments can elicit an immune response. For it to occur, peptides must form stable complexes with Major Histocompatibility Complex (MHC) molecules and be presented on the cell surface. Computational predictors of MHC binding are often used within in silico vaccine design pathways. We have previously shown that, paradoxically, most bacterial proteins known experimentally to elicit an immune response in disease models are depleted in peptides predicted to bind to human MHC alleles. The results presented here, derived using software proven through benchmarking to be the most accurate currently available, show that vaccine antigens contain fewer predicted MHC-binding peptides than control bacterial proteins from almost all subcellular locations with the exception of cell wall and some cytoplasmic proteins. This effect is too large to be explained from the undoubted lack of precision of the software or from the amino acid composition of the antigens. Instead, we propose that pathogens have evolved under the influence of the host immune system so that surface proteins are depleted in potential MHC-binding peptides, and suggest that identification of a protein likely to contain a single immuno-dominant epitope is likely to be a productive strategy for vaccine design.
Resumo:
T-cell activation requires interaction of T-cell receptors (TCR) with peptide epitopes bound by major histocompatibility complex (MHC) proteins. This interaction occurs at a special cell-cell junction known as the immune or immunological synapse. Fluorescence microscopy has shown that the interplay among one agonist peptide-MHC (pMHC), one TCR and one CD4 provides the minimum complexity needed to trigger transient calcium signalling. We describe a computational approach to the study of the immune synapse. Using molecular dynamics simulation, we report here on a study of the smallest viable model, a TCR-pMHC-CD4 complex in a membrane environment. The computed structural and thermodynamic properties are in fair agreement with experiment. A number of biomolecules participate in the formation of the immunological synapse. Multi-scale molecular dynamics simulations may be the best opportunity we have to reach a full understanding of this remarkable supra-macromolecular event at a cell-cell junction.
Resumo:
Zinc is essential for the activity of thymulin, a thymic hormone involved in T-lymphocyte differentiation and activation. Zinc deficiency is widespread in populations with HIV infection, and HIV+ drug users are particularly susceptible to zinc deficiency and immune suppression. This dissertation explored the relationship of zinc-bound active thymulin to plasma zinc, CD4+ and CD8+ cell count, the CD4+/CD8+ ratio, and drug use in HIV-infected drug users. Zinc-bound active thymulin was assessed in plasma of HIV+ drug users who were participating in a 30 month zinc supplementation trial. Plasma from 80 participants at the 12 month visit, and 40 of these same participants, randomly selected, at the baseline visit were assessed for zinc-bound active thymulin levels using a modification of the rosette inhibition assay. Thymulin activity was directly associated with CD4+ cell count (β = 0.127, p = 0.002) and inversely associated with cocaine use (β = −0.908, p = 0.026; R2 = 0.188, p = 0.019) independent of HIV viral load, age, gender and antiretroviral use. An increase in thymulin activity was 1.4 times more likely when CD4+ cell count increased (OR = 1.402, 95%CI: 1.006–1.956), independent of change in viral load, antiretroviral use, and age. Participants who used cocaine consistently, were 7.6 times less likely to have an increase in thymulin activity (OR = 0.133, 95%CI: 0.017–1.061). There was a direct correlation between change in plasma zinc and change in zinc-bound active thymulin (r = 0.243, p = 0.13). Analysis of CD4+ cell count decline in 222 participants in the zinc supplementation trial across the 30 months showed that both crack cocaine use and heavy alcohol use accelerated CD4+ cell count decline. Thymulin activity is directly associated with HIV disease progression, measured by CD4+ cell count, and is depressed with cocaine use independent of antiretroviral use and HIV viral load. Cocaine and heavy alcohol accelerate CD4+ cell count decline. The effect of cocaine on thymic output requires further evaluation as a mechanism for the association of cocaine use with faster HIV disease progression.
Resumo:
Acknowledgements We thank the Iain Fraser Flow Cytometry Centre and the Medical Research Facility of the University of Aberdeen. We are grateful to Drs West, Zaru, and Davidson (University of Dundee) for the scientific discussion and technical assistance. Wethank Derek Mitchell (University of Dundee) for aiding with the quantification of focal contacts. Funding This work was supported by Saving Sight in Grampian and the Development Trust of the UoA (both to J.V.F.). Work on this project was partly funded by project grants from British Heart Foundation and European Foundation for the Study of Diabetes/Lilly diabetes programme grant (to M.D.).
Resumo:
Acknowledgements We thank the Iain Fraser Flow Cytometry Centre and the Medical Research Facility of the University of Aberdeen. We are grateful to Drs West, Zaru, and Davidson (University of Dundee) for the scientific discussion and technical assistance. Wethank Derek Mitchell (University of Dundee) for aiding with the quantification of focal contacts. Funding This work was supported by Saving Sight in Grampian and the Development Trust of the UoA (both to J.V.F.). Work on this project was partly funded by project grants from British Heart Foundation and European Foundation for the Study of Diabetes/Lilly diabetes programme grant (to M.D.).
Resumo:
Our group has pioneered the development of a live-attenuated poliovirus, called PVSRIPO, for the purpose of targeting cancer. Despite clinical progress, the cancer selective cytotoxicity and immunotherapeutic potential of PVSRIPO has not yet been mechanistically dissected. Defining such mechanisms may inform its clinical application.
Herein I describe the discovery of a mechanism by which the MAP-Kinase Interacting Kinases (MNKs) regulate PVSRIPO cytotoxicity in cancer. In doing so, I delineate a novel, intricate network connecting the MNK and mTOR signaling pathway that regulates activity of a splicing kinase called the Ser-Arg Rich Protein Kinase (SRPK), and define SRPK as an impediment to IRES mediated translation. Moreover, I demonstrate that MNK regulates mTORC1 associations that determine its substrate proximity and thus, activity. In a collaborative effort, we found that PVSRIPO oncolysis produces antigen specific, cytolytic anti-tumor immunity in an in vitro human system and that much of the observed adjuvancy is due to the direct infection of dendritic cells (DCs) by the virus itself; implicating PVSRIPO as a potent adjuvant. In summary, oncogenic signaling in part through MNK leads to cancer specific cytotoxicity by PVSRIPO that engages an inflammatory environment conducive to DC activation and antigen specific T cell antigen immunity.
Resumo:
Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1β that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.
Resumo:
BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.
METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1β response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover.
RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1β release from macrophages, through lysosomal destabilization. IL-1β secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1β release was significantly reduced in primary macrophages from ctss(-/-) mice.
CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1β release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.
Resumo:
As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.
Resumo:
As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.
Resumo:
Background: Between 1961-1971 vitamin D deficiency was recognized as a public health issue in the UK, because of the lack of effective sunlight and the population mix [1, 2]. In recent years, health care professionals have cited evidence suggesting a re-emergence of the vitamin D deficiency linked to a number of health consequences as a concern [3-6]. Evidence from observational studies has linked low vitamin D status with impairment in glucose homeostasis and immune dysfunction [7-9]. However, interventional studies, particularly those focused on paediatric populations, have been limited and inconsistent. There is a need for detailed studies, to clarify the therapeutic benefits of vitamin D in these important clinical areas. Objective: The aims of this PhD thesis were two-fold. Firstly, to perform preliminary work assessing the association between vitamin D deficiency and bone status, glucose homeostasis and immune function, and to explore any changes in these parameters following short term vitamin D3 replacement therapy. Secondly, to assess the effectiveness of an electronic surveillance system (ScotPSU) as a tool to determine the current incidence of hospital-based presentation of childhood vitamin D deficiency in Scotland. Methods: Active surveillance was performed for a period of two years as a part of an electronic web-based surveillance programme performed by the Scottish Paediatric Surveillance Unit (ScotPSU). The validity of the system was assessed by identifying cases with profound vitamin D deficiency (in Glasgow and Edinburgh) from the regional laboratory. All clinical details were checked against those identified using the surveillance system. Thirty-seven children aged 3 months to 10 years, who had been diagnosed with vitamin D deficiency, were recruited for the bone, glucose and immunity studies over a period of 24 months. Twenty-five samples were analysed for the glucose and bone studies; of these, 18 samples were further analysed for immune study. Treatment consisted of six weeks taking 5000 IU units cholecalciferol orally once a day. At baseline and after completion of treatment, 25 hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH), alkaline phosphatase (ALP), collagen type 1 cross-linked C-telopeptide (CTX), osteocalcin (OCN), calcium, phosphate, insulin, glucose, homeostasis model assessment index, estimated insulin resistance (HOMA IR), glycated hemoglobin (HbA1c), sex hormone binding globulin (SHBG), lipids profiles, T helper 1 (Th1) cytokines (interleukin-2 ( IL-2), tumor necrosis factors-alpha (TNF-α), interferon-gamma (INF-γ)), T helper 2 (Th2) cytokines (interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6)), T helper 17 (Th17) cytokine (interleukin-17 (IL-17)), Regulatory T (Treg) cytokine (interleukin-10 (IL-10)) and chemokines/cytokines, linked with Th1/Th2 subset balance and/or differentiation (interleukin-8 (IL-8), interleukin-12 (IL-12), eosinophil chemotactic protein ( EOTAXIN), macrophage inflammatory proteins-1beta (MIP-1β), interferon-gamma-induced protein-10 (IP-10), regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein-1(MCP-1)) were measured. Leukoocyte subset analysis was performed for T cells, B cells and T regulatory cells and a luminex assay was used to measure the cytokiens. Results: Between September 2009 and August 2011, 163 cases of vitamin D deficiency were brought to the attention of the ScotPSU, and the majority of cases (n = 82) were reported in Glasgow. The cross-validation checking in Glasgow and Edinburgh over a one-year period revealed only 3 (11%) cases of clearly symptomatic vitamin D deficiency, which had been missed by the ScotPSU survey in Glasgow. While 16 (67%) symptomatic cases had failed to be reported through the ScotPSU survey in Edinburgh. For the 23 children who are included in bone and glucose studies, 22 (96%) children had basal serum 25(OH)D in the deficiency range (< 50 nmol/l) and one (4%) child had serum 25(OH)D in the insufficiency range (51-75 nmol/l). Following vitamin D3 treatment, 2 (9%) children had final serum 25(OH)D lower than 50 nmol/l, 6 (26%) children had final serum 25(OH)D between >50-75 nmol/l, 12 (52%) children reached a final serum 25(OH)D >75-150 nmol/l and finally 3 (13%) exceeded the normal reference range with a final 25(OH)D >150 nmol/l. Markers for remodelling ALP and PTH had significantly decreased (p = 0.001 and <0.0001 for ALP and PTH respectively). In 17 patients for whom insulin and HOMA IR data were available and enrolled in glucose study, significant improvements in insulin resistance (p = 0.04) with a trend toward a reduction in serum insulin (p = 0.05) was observed. Of those 14 children who had their cytokines profile data analysed and enrolled in the immunity study, insulin and HOMA IR data were missed in one child. A significant increase in the main Th2 secreted cytokine IL-4 (p = 0.001) and a tendency for significant increases in other Th2 secreted cytokines IL-5 (p = 0.05) and IL-6 (p = 0.05) was observed following vitamin D3 supplementation. Conclusion: An electronic surveillance system can provide data for studying the epidemiology of vitamin D deficiency. However, it may underestimate the number of positive cases. Improving vitamin D status in vitamin D deficient otherwise healthy children significantly improved their vitamin D deficient status, and was associated with an improvement in bone profile, improvements in insulin resistance and an alteration in main Th2 secreting cytokines.
Resumo:
Type 1diabetes (T1D) is an autoimmune disease, which is influenced by a variety of environmental factors including diet and microbes. These factors affect the homeostasis and the immune system of the gut. This thesis explored the altered regulation of the immune system and the development of diabetes in non-obese diabetic (NOD) mice. Inflammation in the entire intestine of diabetes-prone NOD mice was studied using a novel ex-vivo imaging system of reactive oxygen and nitrogen species (RONS), in relation to two feeding regimens. In parallel, gut barrier integrity and intestinal T-cell activation were assessed. Extra-intestinal manifestations of inflammation and decreased barrier integrity were sought for by studying peritoneal leukocytes. In addition, the role of pectin and xylan as dietary factors involved in diabetes development in NOD mice was explored. NOD mice showed expression of RONS especially in the distal small intestine, which coincided with T-cell activation and increased permeability to macromolecules. The introduction of a casein hydrolysate (hydrolysed milk protein) diet reduced these phenomena, altered the gut microbiota and reduced the incidence of T1D. Extra-intestinally, macrophages appeared in large numbers in the peritoneum of NOD mice after weaning. Peritoneal macrophages (PM) expressed high levels of interleukin-1 receptor associated kinase M (IRAK-M), which was indicative of exposure to ligands of toll-like receptor 4 (TLR-4) such as bacterial lipopolysaccharide (LPS). Intraperitoneal LPS injections activated T cells in the pancreatic lymph nodes (PaLN) and thus, therefore potentially could activate islet-specific T cells. Addition of pectin and xylan to an otherwise diabetes-retarding semisynthetic diet affected microbial colonization of newly-weaned NOD mice, disturbed gut homeostasis and promoted diabetes development. These results help us to understand how diet and microbiota impact the regulation of the gut immune system in a way that might promote T1D in NOD mice.
Resumo:
Cells adapt to their changing world by sensing environmental cues and responding appropriately. This is made possible by complex cascades of biochemical signals that originate at the cell membrane. In the last decade it has become apparent that the origin of these signals can also arise from physical cues in the environment. Our motivation is to investigate the role of physical factors in the cellular response of the B lymphocyte. B cells patrol the body for signs of invading pathogens in the form of antigen on the surface of antigen presenting cells. Binding of antigen with surface proteins initiates biochemical signaling essential to the immune response. Once contact is made, the B cell spreads on the surface of the antigen presenting cell in order to gather as much antigen as possible. The physical mechanisms that govern this process are unexplored. In this research, we examine the role of the physical parameters of antigen mobility and cell surface topography on B cell spreading and activation. Both physical parameters are biologically relevant as immunogens for vaccine design, which can provide laterally mobile and immobile antigens and topographical surfaces. Another physical parameter that influences B cell response and the formation of the cell-cell junction is surface topography. This is biologically relevant as antigen presenting cells have highly convoluted membranes, resulting in variable topography. We found that B cell activation required the formation of antigen-receptor clusters and their translocation within the attachment plane. We showed that cells which failed to achieve these mobile clusters due to prohibited ligand mobility were much less activation competent. To investigate the effect of topography, we use nano- and micro-patterned substrates, on which B cells were allowed to spread and become activated. We found that B cell spreading, actin dynamics, B cell receptor distribution and calcium signaling are dependent on the topographical patterning of the substrate. A quantitative understanding of cellular response to physical parameters is essential to uncover the fundamental mechanisms that drive B cell activation. The results of this research are highly applicable to the field of vaccine development and therapies for autoimmune diseases. Our studies of the physical aspects of lymphocyte activation will reveal the role these factors play in immunity, thus enabling their optimization for biological function and potentially enabling the production of more effective vaccines.
Resumo:
Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. From the Clinical Editor: Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting.
Resumo:
This thesis reports five studies that may contribute to understand how weaning affects the immune and intestinal microbiota maturation of the piglet and proposes some possible nutritional strategies to attenuate its negative effects. The first study showed that weaning is associated in Payer’s patches with the activation of MHC response against class I antigens and that related to the stimulation to IFN-γ and showed, for the first time, that their blood at weaning remains dominated by immature blood cells. In the second study we tested if the use of a live vaccine against a conditionally but also genetically based intestinal disease, like PWD, could have an impact on the growth performance of pigs and their intestinal microbiota and if it could provide a model to test the response to nutritional strategies under conditions of an immune and intestinal stimulation for animals susceptible to ETEC type. In this study, we demonstrated how a vaccinal strain of F4/F18 E. coli can affect the gut microbial composition of piglets, regardless of their genetic susceptibility to ETEC infection. In the third study we evidenced how a nucleotide supplementation can favor the proliferation of jejunal Peyer patches and anticipate the maturation of the fecal microbiota. In the fourth study we reported how xylanase can favor the proliferation of Lactobacillus reuteri. Finally, we showed some first results on the muscles fiber development in fast- and slow-growing suckling pigs and the relationship with the intestinal microbiota. Taken together, the results presented in this thesis provide new insight about the interplay between the host-genetics, gut microbial composition, and host physiological status. Furthermore, it provides confirmation that the use of known genetic markers for ETEC F4 and F18 could represent a potential tool to stratify the animals in the trials both in healthy or challenge-based protocols.