910 resultados para IMMOBILIZED ENZYME
Resumo:
Lipase from Candida rugosa was immobilized by covalent attachment on hybrid SiO2-chitosan obtained by sol-gel technique. A comparative study between free and immobilized lipase was provided in terms of pH, temperature, kinetic parameters and thermal stability on the olive oil hydrolysis. The pH and temperature for maximum activity shifted from 7.0 and 45 ºC for the free lipase to 7.5 and wide range of temperature (40-50 ºC) after immobilization. Kinetics parameters were found to obey Michaelis-Menten equation and K M values indicated that immobilization process reduced the affinity of enzyme-substrate; however Kd values revealed an increase of thermal stability of lipase.
Resumo:
This study aimed to evaluate the environmental conditions for enzyme activity of catechol 1,2-dioxygenase (C1,2O) and catechol 2,3-dioxygenase (C2,3O) produced by Gordonia polyisoprenivorans in cell-free and immobilized extracts. The optimum conditions of pH, temperature, time course and effect of ions for enzyme activity were determined. Peak activity of C1,2O occurred at pH 8.0. The isolate exhibited the highest activity of C2,3O at pH 7.0 and 8.0 for the cell-free extract and immobilized extract, respectively. This isolate exhibited important characteristics such as broad range of pH, temperature and time course for enzyme activity.
Resumo:
The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.
Resumo:
This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB). The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.
Resumo:
The application of Lipozyme (Termomyces lanuginosus) immobilized in gelatin gel in aliphatic ester synthesis was investigated taking the esterification of hexanoic acid with n-butanol as a model reaction. Conditions were optimized by factorial design and the highest conversion was obtained under the following conditions: molar ratio alcohol: acid of 2:1, reaction time of 48 h and biocatalyst weight of 7.0 g. Under these conditions the esterification yield was around 98 %. The operational stability of the immobilized lipase was assessed and results showed that after 12 batch runs, the enzyme showed no significant loss of activity.
Resumo:
The present study investigated the carboxylation of silver nanoparticles (AgNPs) by 1:3 nitric acid-sulfuric acid mixtures for immobilizing Aspergillus oryzae β-galactosidase. Carboxylated AgNPs retained 93% enzyme upon immobilization and the enzyme did not leach out appreciably from the modified nanosupport in the presence of 100 mmol L-1 NaCl. Atomic force micrograph revealed the binding of β-galactosidase on the modified AgNPs. The optimal pH for soluble and carboxylated AgNPs adsorbed β-galactosidase (IβG) was observed at pH 4.5 while the optimal operating temperature was broadened from 50 ºC to 60 ºC for IβG. Michaelis constant, Km was increased two and a half fold for IβG while Vmax decreases slightly as compared to soluble enzyme. β-galactosidase immobilized on surface functionalized AgNPs retained 70% biocatalytic activity even at 4% galactose concentration as compared to enzyme in solution. Our study showed that IβG produces greater amount of galacto-oligosaccharides at higher temperatures (50 ºC and 60 ºC) from 0.1 mol L-1 lactose solution at pH 4.5 as compared to previous reports.
Resumo:
The aim of this work is to systematically explore the effect of the synthesis conditions of ZnO structures, immobilized on different substrates by hydrothermal treatment, in its photocatalytic activity. A circumscribed central composite design of experiments was used to analyze the effects of reagents stoichiometry, reaction time and temperature, covering a wide range of these variables. The substrates used were etched glass, copper and zinc foils. The photocatalytic activity of the as-obtained ZnO samples was evaluated through photocatalytic degradation of rhodamine B (RhB) in aqueous solution under UV irradiation. Zinc foils presented the best immobilized film quality and the maximum dye removal was 80% in one hour of UV exposure.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
A L-ascorbic acid biosensor based on ascorbate oxidase has been developed. The enzyme was extracted from the mesocarp of cucumber (Cucumis sativus) by using 0.05 mol L-1 phosphate buffer, pH 5.8 containing 0.5 mol L-1 NaCl. After the dialysis versus phosphate buffer 0.05 mol L-1 pH 5.8, the enzyme was immobilized onto nylon net through glutaraldehyde covalent bond. The membrane was coupled to an O2 electrode and the yielding reaction monitored by oxygen depletion at -600 mV using flow injection analysis optimized to 0.1 mol L-1 phosphate buffer pH 5.8, as the carrier solution and flow-rate of 0.5 mL min-1. The ascorbic acid calibration curve was linear from 1.2x10-4 to 1.0x10-3 mol L-1. The evaluation of biosensor lifetime leads to 500 injections. Commercial pharmaceutical samples were analyzed with the proposed method and the results were compared with those obtained by high-performance liquid chromatography (HPLC).
Resumo:
Pothomorphe umbellata (L.) known on Brazil as Caapeba has a number of popular medicinal use, and it has been studied in relation to its pharmacological activity. Peroxidase specific activity (units/mg protein) was evaluated in callus cell culture samples of the P.umbellata, grown in two different MS medium (media 1 and media 2), submitted to 16 hours photoperiod or kept in darkness. Cell growth rate curve showed that the best growth indices were observed when media 2 submitted to the photoperiod regime was used, followed by the same media kept in darkness (stress condition). The results obtained also showed that the cell culture grown under stress conditions (darkness) lead to high content of peroxidase enzyme (an increase of 700% was observed). Kinetic constant values of 3.3 mmol.L-1 and 2,8 sec-1 were obtained for kM and v max,, respectively, using guaiacol as enzyme substrate.
Resumo:
A rapid indirect enzyme-linked immunosorbent assay (ELISA) was developed for measuring antibodies against Anaplasma marginale using a partially soluble antigen prepared from semi-purified initial bodies from erythrocytes with 80.0% of rickettsiaemia. This technique utilized alkaline phosphatase and p-nitrophenyl phosphate as reaction indicators. The high sensitivity (100.0%) was confirmed with sera from 100 calves experimentally-infected with A. marginale. All of these animals showed seroconversion before or at the same time of the first rickettsiaemia or even when it was not detected. Also the elevated specificity (94.0%) was confirmed by the low percentage of cross-reactions with sera from animals experimentally-infected with Babesia bigemina and Babesia bovis (1.4 and 6.6%, respectively). Performances of ELISA and indirect fluorescent antibody test (IFAT) with 324 sera from enzootically stable area did not show statistical difference (P>0.05), since the former showed 96.9% and the latter 97.2% of positive reactions. The advantage of this ELISA is a shorter execution time than others developed until now, allowing more samples to be analyzed.
Resumo:
A rapid indirect enzyme-linked immunosorbent assay (ELISA) was developed for measuring antibodies against Leishmania chagasi using total antigen from lysed promastigotes. Fifty symptomatic mixed breed dogs from a region of high incidence of visceral leishmaniasis in Brazil were examined. The results showed that in the positive animals, diagnosed by cytological examination, the ELISA using protein A assay system (mean optical density ± SD / 2.078 ± 0.631) detected more antibodies than the anti-IgG assay (mean optical density ± SD / 1.008 ± 0.437), while in the negative animals, the results by both systems were similar. These results suggest that the ELISA assay using protein A peroxidase conjugated could be useful to detect early infected animals in endemic areas, and thus help to control the spread of the infection.
Resumo:
Visceral leishmaniasis is an emergent zoonosis with an increasing number of new cases in Brazil where the domestic dog is an important parasite reservoir in the infectious cycle of Leishmania chagasi. An enzyme-linked immunosorbent assay (ELISA), based upon the use of a total soluble antigenic preparation of L. chagasi, was adapted for the detection of IgM antibodies in the serum of infected dogs. Optimal dilutions of the antigen, using positive and negative reference sera, were determined by checkboard titrations. The specificity and sensitivity of the ELISA were 100 %. A total of 110 serum samples were taken from dogs in Belo Horizonte, Minas Gerais, Brazil, and examined for anti-L. chagasi IgM antibody by ELISA and indirect fluorescent antibody test (IFAT). About 25% (n=27) of all the dogs tested were found serologically positive for L. chagasi by IFAT, while 89.09% (n=98) were seropositive by ELISA. The results obtained by ELISA and IFAT were significantly different (P<0.01). The combined use of ELISA and IFAT is recommended in order to enable veterinary services to more efficiently detect canine visceral leishmaniasis.