852 resultados para Hydrophobic electrolytes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saliva contains a number of biochemical components which may be useful for diagnosis/monitoring of metabolic disorders, and as markers of cancer or heart disease. Saliva collection is attractive as a non-invasive sampling method for infants and elderly patients. We present a method suitable for saliva collection from neonates. We have applied this technique for the determination of salivary nucleotide metabolites. Saliva was collected from 10 healthy neonates using washed cotton swabs, and directly from 10 adults. Two methods for saliva extraction from oral swabs were evaluated. The analytes were then separated using high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS). The limits of detection for 14 purine/pyrimidine metabolites were variable, ranging from 0.01 to 1.0 mu M. Recovery of hydrophobic purine/pyrimidine metabolites from cotton tips was consistently high using water/acetonitrile extraction (92.7-111%) compared with water extraction alone. The concentrations of these metabolites were significantly higher in neonatal saliva than in adults. Preliminary ranges for nucleotide metabolites in neonatal and adult saliva are reported. Hypoxanthine and xanthine were grossly raised in neonates (49.3 +/- 25.4; 30.9 +/- 19.5 mu M respectively) compared to adults (4.3 +/- 3.3; 4.6 +/- 4.5 mu M); nucleosides were also markedly raised in neonates. This study focuses on three essential details: contamination of oral swabs during manufacturing and how to overcome this; weighing swabs to accurately measure small saliva volumes; and methods for extracting saliva metabolites of interest from cotton swabs. A method is described for determining nucleotide metabolites using HPLC with photo-diode array or MS/MS. The advantages of utilising saliva are highlighted. Nucleotide metabolites were not simply in equilibrium with plasma, but may be actively secreted into saliva, and this process is more active in neonates than adults. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The adsorption of bovine serum albumin (BSA) onto mesoporous silica spheres (MPS) synthesized from silica colloids was studied employing real time in situ measurements. The stabilities of the BSA at different pH values, their isoelectric points and zeta potentials were determined in order to probe the interactions between the protein and the mesoporous silica. Results The pore size of MPS was designed for protein, and this, coupled with an in depth understanding of the physico-chemical characteristics of the protein and MPS has yielded a better binding capacity and delivery profile. The adsorption isotherm at pH 4.2 fitted the Langmuir model and displayed the highest adsorption capacity (71.43 mg mL-1 MPS). Furthermore, the delivery rates of BSA from the MPS under physiological conditions were shown to be dependent on the ionic strength of the buffer and protein loading concentration. Conclusion Economics and scale-up considerations of mesoporous material synthesized via destabilization of colloids by electrolyte indicate the scaleability and commercial viability of this technology as a delivery platform for biopharmaceutical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst = 131.t + 3.4 (R2 = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic  -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CoMFA and CoMSIA analysis were utilized in this investigation to define the important interacting regions in paclitaxel/tubulin binding site and to develop selective paclitaxel-like active compounds. The starting geometry of paclitaxel analogs was taken from the crystal structure of docetaxel. A total of 28 derivatives of paclitaxel were divided into two groups—a training set comprising of 19 compounds and a test set comprising of nine compounds. They were constructed and geometrically optimized using SYBYL v6.6. CoMFA studies provided a good predictability (q2 = 0.699, r2 = 0.991, PC = 6, S.E.E. = 0.343 and F = 185.910). They showed the steric and electrostatic properties as the major interacting forces whilst the lipophilic property contribution was a minor factor for recognition forces of the binding site. These results were in agreement with the experimental data of the binding activities of these compounds. Five fields in CoMSIA analysis (steric, electrostatic, hydrophobic, hydrogen-bond acceptor and donor properties) were considered contributors in the ligand–receptor interactions. The results obtained from the CoMSIA studies were: q2 = 0.535, r2 = 0.983, PC = 5, S.E.E. = 0.452 and F = 127.884. The data obtained from both CoMFA and CoMSIA studies were interpreted with respect to the paclitaxel/tubulin binding site. This intuitively suggested where the most significant anchoring points for binding affinity are located. This information could be used for the development of new compounds having paclitaxel-like activity with new chemical entities to overcome the existing pharmaceutical barriers and the economical problem associated with the synthesis of the paclitaxel analogs. These will boost the wide use of this useful class of compounds, i.e. in brain tumors as the most of the present active compounds have poor blood–brain barrier crossing ratios and also, various tubulin isotypes has shown resistance to taxanes and other antimitotic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of new protic ionic liquids (PILs) based on aniline derivatives and the use of high-throughput (HT) techniques to screen possible candidates. In this work, a simple HT method was applied to rapidly screen different aniline derivatives against different acids in order to identify possible combinations that produce PILs. This was followed by repeating the HT process with Chemspeed robotic synthesis platform for more accurate results. One of the successful combinations were then chosen to be synthesised on full scale for further analysis. The new PILs are of interest to the fields of ionic liquids, energy storage and especially, conducting polymers as they serve as solvents, electrolytes and monomers in the same time for possible electropolymerisation (i.e. a self-contained polymer precursor).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Group 1 grass pollen allergens are glycoproteins of the β-expansin family. They are a predominant component of pollen and are potent allergens with a high frequency of serum IgE reactivity in grass pollen-allergic patients. Bahia grass is distinct from temperate grasses and has a prolonged pollination period and wide distribution in warmer climates. Here we describe the purification of the group 1 pollen allergen, Pas n 1, from Bahia grass (Paspalum notatum), an important subtropical aeroallergen source. Methods Pas n 1 was purified from an aqueous Bahia grass pollen extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography, and assessed by one- and two-dimensional gel electrophoresis, immunoblotting and ELISA. Results Pas n 1 was purified to a single 29-kDa protein band containing two dominant isoforms detected by an allergen-specific monoclonal antibody and serum IgE of a Bahia grass pollen-allergic donor. The frequency of serum IgE reactivity with purified Pas n 1 in 51 Bahia grass pollen-allergic patients was 90.6%. Serum IgE reactivity with purified Pas n 1 was highly correlated with serum IgE reactivity with Bahia grass pollen extract and recombinant Pas n 1 (r = 0.821 and 0.913, respectively). Conclusions Pas n 1 is a major allergen reactive at high frequency with serum IgE of Bahia grass pollen-allergic patients. Purified natural Pas n 1 has utility for improved specific diagnosis and immunotherapy for Bahia grass pollen allergy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bahia grass, Paspalum notatum, is an important pollen allergen source with a long season of pollination and wide distribution in subtropical and temperate regions. We aimed to characterize the 55. kDa allergen of Bahia grass pollen (BaGP) and ascertain its clinical importance. BaGP extract was separated by 2D-PAGE and immunoblotted with serum IgE of a grass pollen-allergic patient. The amino-terminal protein sequence of the predominant allergen isoform at 55. kDa had similarity with the group 13 allergens of Timothy grass and maize pollen, Phl p 13 and Zea m 13. Four sequences obtained by rapid amplification of the allergen cDNA ends represented multiple isoforms of Pas n 13. The predicted full length cDNA for Pas n 13 encoded a 423 amino acid glycoprotein including a signal peptide of 28 residues and with a predicted pI of 7.0. Tandem mass spectrometry of tryptic peptides of 2D gel spots identified peptides specific to the deduced amino acid sequence for each of the four Pas n 13 cDNA, representing 47% of the predicted mature protein sequence of Pas n 13. There was 80.6% and 72.6% amino acid identity with Zea m 13 and Phl p 13, respectively. Reactivity with a Phl p 13-specific monoclonal antibody AF6 supported designation of this allergen as Pas n 13. The allergen was purified from BaGP extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. Purified Pas n 13 reacted with serum IgE of 34 of 71 (48%) grass pollen-allergic patients and specifically inhibited IgE reactivity with the 55. kDa band of BaGP for two grass pollen-allergic donors. Four isoforms of Pas n 13 from pI 6.3-7.8 had IgE-reactivity with grass pollen allergic sera. The allergenic activity of purified Pas n 13 was demonstrated by activation of basophils from whole blood of three grass pollen-allergic donors tested but not control donors. Pas n 13 is thus a clinically relevant pollen allergen of the subtropical Bahia grass likely to be important in eliciting seasonal allergic rhinitis and asthma in grass pollen-allergic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two monoclonal antibodies (mAb) CB268 and CII-C1 to type II collagen (CII) react with precisely the same conformational epitope constituted by the residues ARGLT on the three chains of the CII triple helix. The antibodies share structural similarity, with most differences in the complementarity determining region 3 of the heavy chain (HCDR3). The fine reactivity of these mAbs was investigated by screening two nonameric phage-displayed random peptide libraries. For each mAb, there were phage clones (phagotopes) that reacted strongly by ELISA only with the selecting mAb, and inhibited binding to CII only for that mAb, not the alternate mAb. Nonetheless, a synthetic peptide RRLPFGSQM corresponding to an insert from a highly reactive CII-C1-selected phagotope, which was unreactive (and non-inhibitory) with CB268, inhibited the reactivity of CB268 with CII. Most phage-displayed peptides contained a motif in the first part of the molecule that consisted of two basic residues adjacent to at least one hydrophobic residue (e.g. RRL or LRR), but the second portion of the peptides differed for the two mAbs. We predict that conserved CDR sequences interact with the basic-basic-hydrophobic motif, whereas non-conserved amino acids in the binding sites (especially HCDR3) interact with unique peptide sequences and limit cross-reactivity. The observation that two mAbs can react identically with a single epitope on one antigen (CII), but show no cross-reactivity when tested against a second (phagotope) indicates that microorganisms could exhibit mimics capable of initiating autoimmunity without this being evident from conventional assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of B cell epitopes has been advanced by the use of random peptide libraries displayed within the coat protein of bacteriophage. This technique was applied to the monoclonal antibody (mAb) C1 to type II collagen (CII-C1). CII-C1 is known to react with a conformational epitope on type II collagen that includes residues 359-363. Three rounds of selection were used to screen two random nonameric phage libraries and 18 phagotopes were isolated. CII-C1 reacted by ELISA with 17 of the 18 phagotopes: one phagotope contained a stop codon. Of the eight most reactive phage, seven inhibited the reactivity by ELISA of CII-C1 with type II collagen. Of the 18 phage isolated, 11 encoded the motif F-G-x-Q with the sequence F-G-S-Q in 6, 2 encoded F-G-Q, and one the reverse motif Q-x-y-F. Most phagotopes that inhibited the reactivity of CII-C1 encoded two particular motifs consisting of two basic amino acid residues and a hydrophobic residue in the first part of the insert and the F-G-x-Q or F-G-Q motif ill the second part; phagotopes which contained only one basic residue in the first part of the sequence were less reactive. These motifs are not represented in the linear sequence of type II collagen and thus represent mimotopes of the epitope for CII-C1 on type II collagen. There were five phagotopes with peptide inserts containing the sequence RLPFG occurring in the Epstein-Barr virus nuclear antigen, EBNA- 1. This is of interest because EBV has been implicated in the initiation of rheumatoid arthritis (RA) by reason of increased reactivity to EBNA-1 in RA sera. In conclusion, the phage display technique disclosed mimotopes for a conformational epitope of type II collagen, and revealed an interesting homology with a sequence of the EBNA-1 antigen from Epstein Barr virus.