543 resultados para Hydrogel*


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amperometric glucose biosensor was developed using an anionic clay matrix (LDH) as enzyme support. The enzyme glucose oxidase (GOx) was immobilized on a layered double hydroxide Ni/Al-NO3 LDH during the electrosynthesis, which was followed by crosslinking with glutaraldehyde (GA) vapours or with GA and bovine serum albumin (GABSA) to avoid the enzyme release. The electrochemical reaction was carried out potentiostatically, at -0.9V vs. SCE, using a rotating disc Pt electrode to assure homogeneity of the electrodeposition suspension, containing GOx, Ni(NO3)2 and Al(NO3)3 in 0.3 M KNO3. The mechanism responsible of the LDH electrodeposition involves the precipitation of the LDH due to the increase of pH at the surface of the electrode, following the cathodic reduction of nitrates. The Pt surface modified with the Ni/Al-NO3 LDH shows a much reduced noise, giving rise to a better signal to noise ratio for the currents relative to H2O2 oxidation, and a linear range for H2O2 determination wider than the one observed for bare Pt electrodes. We pointed out the performances of the biosensor in terms of sensitivity to glucose, calculated from the slope of the linear part of the calibration curve for enzimatically produced H2O2; the sensitivity was dependent on parameters related to the electrodeposition in addition to working conditions. In order to optimise the glucose biosensor performances, with a reduced number of experimental runs, we applied an experimental design. A first screening was performed considering the following variables: deposition time (30 - 120 s), enzyme concentration (0.5 - 3.0 mg/mL), Ni/Al molar ratio (3:1 or 2:1) of the electrodeposition solution at a total metals concentration of 0.03 M and pH of the working buffer solution (5.5-7.0). On the basis of the results from this screening, a full factorial design was carried out, taking into account only enzyme concentration and Ni/Al molar ratio of the electrosynthesis solution. A full factorial design was performed to study linear interactions between factors and their quadratic effects and the optimal setup was evaluated by the isoresponse curves. The significant factors were: enzyme concentration (linear and quadratic terms) and the interaction between enzyme concentration and Ni/Al molar ratio. Since the major obstacle for application of amperometric glucose biosensors is the interference signal resulting from other electro-oxidizable species present in the real matrices, such as ascorbate (AA), the use of different permselective membranes on Pt-LDHGOx modified electrode was discussed with the aim of improving biosensor selectivity and stability. Conventional membranes obtained using Nafion, glutaraldehyde (GA) vapours, GA-BSA were tested together with more innovative materials like palladium hexacyanoferrate (PdHCF) and titania hydrogels. Particular attention has been devoted to hydrogels, because they possess some attractive features, which are generally considered to favour biosensor materials biocompatibility and, consequently, the functional enzyme stability. The Pt-LDH-GOx-PdHCF hydrogel biosensor presented an anti-interferant ability so that to be applied for an accurate glucose analysis in blood. To further improve the biosensor selectivity, protective membranes containing horseradish peroxidase (HRP) were also investigated with the aim of oxidising the interferants before they reach the electrode surface. In such a case glucose determination was also accomplished in real matrices with high AA content. Furthermore, the application of a LDH containing nickel in the oxidised state was performed not only as a support for the enzyme, but also as anti-interferant sistem. The result is very promising and it could be the starting point for further applications in the field of amperometric biosensors; the study could be extended to other oxidase enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gegenstand und Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung einer Hydrogelmatrix, welche für die Herstellung eines vielseitig verwendbaren Sensors, der mehrere Analyten (Proteine, DNA etc.) in hoher Verdünnung (c0 < 50 fM) aus kleinsten Probenmengen (Volumina <20 nl) schnell (t < 1 min) und parallel nachweisen kann, Verwendung finden soll. Der Fokus der Arbeit lag dabei in der Synthese und Charakterisierung von Copolymeren als Hydrogelmatrix, welche geeignetes temperaturabhängiges Verhalten zeigen. Die Copolymere wurden in eine dreidimensionale Netzwerkstruktur überführt und auf einer Goldoberfläche kovalent angebunden, um Delamination zu vermeiden und die Untersuchung mittels Oberflächenplasmonenresonanz-Spektroskopie (SPR) und Optischer Wellenleiter-Spektroskopie (OWS) zu erlauben. Weiterhin wurde das temperaturabhängige Verhalten der Polymernetzwerke in Wasser mittels optischen Messungen (SPR/OWS) untersucht, um Erkenntnisse über die Quell- und Kollabiereigenschaften des Hydrogels zu gewinnen. Um temperaturschaltbare Hydrogele herzustellen, wurden auf N-Isopropylacrylamid (NIPAAm) basierende Polymere synthetisiert. Es wurde sowohl die für Hydrogele übliche Methode der freien radikalischen Vernetzungspolymerisation in Wasser, wie eine neue, auf Benzophenoneinheiten basierende Syntheseroute, welche die freie radikalische Polymerisation in organischem Medium nutzt, verwendet. Die synthetisierten Polymere sind Copolymere aus N‑Isopropylacrylamid (NIPAAm) und 4-Methacryloyloxybenzophenon (MABP). NIPAAm ist dabei für das temperaturschaltbare Verhalten der Gele verantwortlich und MABP dient als Photovernetzer. Weitere Copolymere, die neben den genannten Monomeren noch andere Funktionen, wie z.B. ionische Gruppen oder Aktivesterfunktionen enthalten, wurden ebenfalls synthetisiert. Das temperaturabhängige Quellverhalten in Bezug auf die chemische Zusammensetzung wurde mit der Oberflächenplasmonenresonanz-Spektroskopie (SPR) und Optischen Wellenleiter-Spektroskopie (OWS) untersucht. Es zeigte sich, dass die Anwesenheit von Salz im Hydrogel (Natriumacrylat als Monomer, P4S) Inhomogenität, in Form eines Brechungsindexgradienten senkrecht zur Substratoberfläche, hervorruft. Dies ist nicht der Fall, wenn statt des Salzes die Säure (Methacrylsäure als Monomer, P4A) verwendet wird. Durch die Inhomogenität lassen sich die Filme mit dem Natriummethacrylat nicht mehr mit dem, üblicherweise zur Auswertung genutzten, Kastenmodell beschreiben. Die Anwendung der Wentzel-Kramers-Brillouin-Näherung (WKB) auf die Messdaten führt hingegen zu dem gewünschten Ergebnis. Man findet ein kastenähnliches Brechungsindexprofil für das Hydrogel mit der Säure (P4A) und ein Gradientenprofil für das Gel mit dem Salz (P4S). Letzteres ist nicht nur hydrophiler und insgesamt stärker gequollen, sondern ragt auch weiter in die überstehende Wasserphase hinein. Anhand eines säurehaltigen Hydrogels (P8A) konnte der quellungshemmende Einfluss von hohen Salzkonzentrationen gezeigt werden. Weiterhin wurde während des Quellvorgangs eine gewisse Anisotropie gefunden, die aber im vollständig gequollenen und vollständig kollabierten Zustand nicht mehr vorliegt. Anhand eines Hydrogels ohne ionisierbare Gruppen (P9) wurde die Reversibilität des Quell- und Kollabiervorgangs gezeigt. Bei einem Vergleich zwischen einem säurehaltigen Hydrogel (P8A, Quellgrad von 7,3) und einem ohne ionisierbare Gruppen (P9, Quellgrad von 6,1), hat die Anwesenheit der 8 mol% Säuregruppen eine leichte Verstärkung der Quellung um den Faktor 1,2 bewirkt. Rasterkraftmikroskopische Untersuchungen (AFM) an diesen beiden Hydrogelen im getrockneten Zustand, haben gezeigt, dass nach dem Quellen, Kollabieren und Trocknen bei beiden Gelen Porenstrukturen sehr unterschiedlicher Ausmaße vorliegen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-Vinylamidderivate sind eine toxikologische unbedenkliche Monomerklasse. Mit diesen Monomeren wurden verschiedene technische Anwendungsgebiete im Bereich der Kern-Schale-Partikel und der fließfähigen und vernetzten Hydrogele untersucht. Kern-Schale-Partikel Für die Synthese von Kern-Schale-Partikeln wurden die N-Vinylamidderivate als Schalenpolymere auf kommerziellen Poly(styrol-stat.-butadien)-Kernpartikeln aufpolymerisiert. Mit Hilfe verschiedener Untersuchungsmethoden (DLS, SEM, FFF, Ultrazentrifuge) wurde die Kern-Schale-Strukturbildung und die Effizienz der Pfropfungsreaktion untersucht und eine erfolgreiche Synthese der Kern-Schale-Partikel belegt. Durch die gezielte Modifizierung des Schalenpolymers wurde ein kationisches, organisches Mikropartikelsystem entwickelt, charakterisiert und auf die Eignung als „Duales Flockungsmittel“ untersucht. Diese Versuche belegten die Eignung der modifizierten Kern-Schale-Partikel als „Duales Flockungsmittel“ und bieten eine Alternative zu kommerziell verwendeten Retentionsmitteln. Außerdem wurden die filmbildenden Eigenschaften der Poly(N﷓vinylformamid)-Kern-Schale-Dispersionen untersucht. Nach der Verfilmung der Dispersionen wurden transparente und harte Filme erhalten. Die Auswirkungen auf die mechanischen Eigenschaften der Filme wurden durch die Variation verschiedener Parameter eingehend studiert. Auf der Basis dieser Partikel wurden selbstvernetzende Dispersionssysteme entwickelt. Das P﷓(VFA)-Schalenpolymer wurde teilweise hydrolysiert und die generierten freien Aminogruppen des Poly(N-vinylamins) durch eine Michael-Addition mit einem divinylfunktionalisierten Acrylat (Tetraethylenglykoldiacrylat) vernetzt. Untersuchungen zur mechanischen Beständigkeit der Filme zeigten bei geringen Vernetzungsgraden eine deutliche Optimierung der maximalen Zugbelastungen. Die Untersuchungen belegten, dass die Verwendung des selbstvernetzenden Dispersionssystems als Dispersion für eine Polymerbeschichtung möglich ist. Hydrogele Die Synthese von fließfähigen und quervernetzten Hydrogelen erfolgte auf der Basis verschiedener N﷓Vinylamide. Mit Hilfe geeigneter Vernetzer wurden feste Hydrogelplatten synthetisiert und für die Auftrennung von DNA-Sequenzen mit Hilfe der Gelelektrophorese verwendet. Scharfe und gute Auftrennung der verschiedenen „DNA-Ladder Standards“ wurden durch die Variation des Vernetzeranteils, der Polymerzusammensetzung, der angelegten Spannung und der Verweilzeit in der Gelelektrophoresekammer mit P﷓(MNVA)-Hydrogelplatten erreicht. Fließfähige und quervernetzte Elektrolytgele auf Poly-(N-vinylamid)-Basis wurden in wartungsfreien pH﷓Elektroden eingesetzt. Die Eignung dieser Hydrogele wurden in Bezug auf die Anwendung eingehend charakterisiert. Elektroden befüllt mit Poly(N-vinylamid)-Gelen wurden in Dauerbelastungsexperimenten, direkt mit kommerziellen pH﷓Elektroden verglichen. Es konnte gezeigt werden, dass die fließfähigen und quervernetzten Poly-(N-vinylamid)-Elektrolytgele in ihren Messeigenschaften gleichwertige bzw. bessere Potentialstabilitäten aufweisen als kommerzielle Referenzelektroden. Die Hydrogele auf Basis von Poly(N-vinylamidderivaten) boten für die beiden getesteten Anwendungen eine toxikologisch unbedenkliche Alternative zu Poly(acrylamid)-Gelen. In dieser Arbeit konnten die durchgeführten Untersuchungen belegen, dass N﷓Vinylamide eine attraktive Monomerklasse ist, die erfolgreich in vielen technischen Anwendungen einsetzbar ist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dextran-based polymers are versatile hydrophilic materials, which can provide functionalized surfaces in various areas including biological and medical applications. Functional, responsive, dextran based hydrogels are crosslinked, dextran based polymers allowing the modulation of response towards external stimuli. The controlled modulation of hydrogel properties towards specific applications and the detailed characterization of the optical, mechanical, and chemical properties are of strong interest in science and further applications. Especially, the structural characteristics of swollen hydrogel matrices and the characterization of their variations upon environmental changes are challenging. Depending on their properties hydrogels are applied as actuators, biosensors, in drug delivery, tissue engineering, or for medical coatings. However, the field of possible applications still shows potential to be expanded. rnSurface attached hydrogel films with a thickness of several micrometers can serve as waveguiding matrix for leaky optical waveguide modes. On the basis of highly swelling and waveguiding dextran based hydrogel films an optical biosensor concept was developed. The synthesis of a dextran based hydrogel matrix, its functionalization to modulate its response towards external stimuli, and the characterization of the swollen hydrogel films were main interests within this biosensor project. A second focus was the optimization of the hydrogel characteristics for cell growth with the aim of creating scaffolds for bone regeneration. Matrix modification towards successful cell growth experiments with endothelial cells and osteoblasts was achieved.rnA photo crosslinkable, carboxymethylated dextran based hydrogel (PCMD) was synthesized and characterized in terms of swelling behaviour and structural properties. Further functionalization was carried out before and after crosslinking. This functionalization aimed towards external manipulation of the swelling degree and the charge of the hydrogel matrix important for biosensor experiments as well as for cell adhesion. The modulation of functionalized PCMD hydrogel responses to pH, ion concentration, electrochemical switching, or a magnetic force was investigated. rnThe PCMD hydrogel films were optically characterized by combining surface plasmon resonance (SPR) and optical waveguide mode spectroscopy (OWS). This technique allows a detailed analysis of the refractive index profile perpendicular to the substrate surface by applying the Wentzel Kramers Brillouin (WKB) approximation. rnIn order to perform biosensor experiments, analyte capturing units such as proteins or antibodies were covalently coupled to the crosslinked hydrogel backbone by applying active ester chemistry. Consequently, target analytes could be located inside the waveguiding matrix. By using labeled analytes, fluorescence enhancement was achieved by fluorescence excitation with the electromagnetic field in the center of the optical waveguide modes. The fluorescence excited by the evanescent electromagnetic field of the surface plasmon was 2 3 orders of magnitude lower. Furthermore, the signal to noise ratio was improved by the fluorescence excitation with leaky optical waveguide modes.rnThe applicability of the PCMD hydrogel sensor matrix for clinically relevant samples was proofed in a cooperation project for the detection of PSA in serum with long range surface plasmon spectroscopy (LRSP) and fluorescence excitation by LRSP (LR SPFS). rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Kombination magnetischer Nanopartikel (NP) mit temperatursensitiven Polymeren führt zur Bildung neuer Komposit-Materialien mit interessanten Eigenschaften, die auf vielfältige Weise genutzt werden können. Mögliche Anwendungsgebiete liegen in der magnetischen Trennung, der selektiven Freisetzung von Medikamenten, dem Aufbau von Sensoren und Aktuatoren. Als Polymerkomponente können z.B. Hydrogele dienen. Die Geschwindigkeit der Quellgradänderung mittels externer Stimuli kann durch eine Reduzierung des Hydrogelvolumens erhöht werden, da das Quellen ein diffusionskontrollierter Prozess ist. rnIm Rahmen dieser Arbeit wurde ein durch ultraviolettes Licht vernetzbares Hydrogel aus N-isopropylacrylamid, Methacrylsäure und dem Vernetzer 4-Benzoylphenylmethacrylat hergestellt (PNIPAAm-Hydrogel) und mit magnetischen Nanopartikeln aus Magnetit (Fe3O4) kombiniert. Dabei wurde die Temperatur- und die pH-Abhängigkeit des Quellgrades im Hinblick auf die Verwendung als nanomechanische Cantilever Sensoren (NCS) untersucht. Desweiteren erfolgte eine Charakterisierung durch Oberflächenplasmonen- und optischer Wellenleitermoden-Resonanz Spektroskopie (SPR/OWS). Die daraus erhaltenen Werte für den pKa-Wert und die lower critical solution Temperatur (LCST) stimmten mit den bekannten Literaturwerten überein. Es konnte gezeigt werden, dass eine stärkere Vernetzung zu einer geringeren LCST führt. Die Ergebnisse mittels NCS wiesen zudem auf einen skin-effect während des Heizens von höher vernetzten Polymeren hin.rnDie Magnetit Nanopartikel wurden ausgehend von Eisen(II)acetylacetonat über eine Hochtemperaturreaktion synthetisiert. Durch Variation der Reaktionstemperatur konnte die Größe der hergestellten Nanopartikel zwischen 3.5 und 20 nm mit einer Größenverteilung von 0.5-2.5 nm eingestellt werden. Durch geeignete Oberflächenfunktionalisierung konnten diese in Wasser stabilisiert werden. Dazu wurde nach zwei Strategien verfahren: Zum einen wurden die Nanopartikel mittels einer Silika-Schale funktionalisiert und zum anderen Zitronensäure als Tensid eingesetzt. Wasserstabilität ist vor allem für biologische Anwendungen wünschenswert. Die magnetischen Partikel wurden mit Hilfe von Transmissionselektronenmikroskopie (TEM), und superconductive quantum interference device (SQUID) charakterisiert. Dabei wurde eine Größenabhängigkeit der magnetischen Eigenschaften sowie superparamagnetisches Verhalten beobachtet. Außerdem wurde die Wärmeerzeugung der magnetischen Nanopartikel in einem AC Magnetfeld untersucht. rnDie Kombination beider Komponenten in Form eines Ferrogels wurde durch Mischen Benzophenon funktionalisierter magnetischer Nanopartikel mit Polymer erreicht. Durch Aufschleudern (Spin-Coaten) wurden dünne Filme erzeugt und diese im Hinblick auf ihr Verhalten in einem Magnetfeld untersucht. Dabei wurde eine geringes Plastikverhalten beobachtet. Die experimentellen Ergebnisse wurden anschließend mit theoretisch berechneten Erwartungswerten verglichen und mit den unterschiedlichen Werten für dreidimensionale Ferrogele in Zusammenhang gestellt. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced optical biosensor platforms exploiting long range surface plasmons (LRSPs) and responsive N-isopropylacrylamide (NIPAAm) hydrogel binding matrix for the detection of protein and bacterial pathogen analytes were carried out. LRSPs are optical waves that originate from coupling of surface plasmons on the opposite sites of a thin metallic film embedded between two dielectrics with similar refractive indices. LRSPs exhibit orders of magnitude lower damping and more extended profile of field compared to regular surface plasmons (SPs). Their excitation is accompanied with narrow resonance and provides stronger enhancement of electromagnetic field intensity that can advance the sensitivity of surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensors. Firstly, we investigated thin gold layers deposited on fluoropolymer surface for the excitation of LRSPs. The study indicates that the morphological, optical and electrical properties of gold film can be changed by the surface energy of fluoropolymer and affect the performance of a SPFS biosensor. A photo-crosslinkable NIPAAm hydrogel was grafted to the sensor surface in order to serve as a binding matrix. It was modified with bio-recognition elements (BREs) via amine coupling chemistry and offered the advantage of large binding capacity, stimuli responsive properties and good biocompatibility. Through experimental observations supported by numerical simulations describing diffusion mass transfer and affinity binding of target molecules in the hydrogel, the hydrogel binding matrix thickness, concentration of BREs and the profile of the probing evanescent field was optimized. Hydrogel with a up to micrometer thickness was shown to support additional hydrogel optical waveguide (HOW) mode which was employed for probing affinity binding events in the gel by means of refractometric and fluorescence measurements. These schemes allow to reach limits of detection (LODs) at picomolar and femtomolar levels, respectively. Besides hydrogel based experiments for detection of molecular analytes, long range surface plasmon-enhanced fluorescence spectroscopy (LRSP-FS) was employed for detection of bacterial pathogens. The influence of capture efficiency of bacteria on surfaces and the profile of the probing field on sensor response were investigated. The potential of LRSP-FS with extended evanescent field is demonstrated for detection of pathogenic E. coli O157:H7 on sandwich immunoassays . LOD as low as 6 cfu mL-1 with a detection time of 40 minutes was achieved.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogels are used in a variety of applications in daily life, such as super absorbers, contact lenses and in drug delivery. Functional hydrogels that allow the incorporation of additional functionalities have enormous potential for future development. The properties of such hydrogels can be diversified by introducing responsiveness to external stimuli. These crosslinked polymers are known to respond to changes in temperature, pH and pressure, as well as chemical and electrical stimuli, magnetic fields and irradiation. From this responsive behavior possible applications arise in many fields like drug delivery, tissue engineering, purification and implementation as actuators, biosensors or for medical coatings. However, their interaction with biomaterial and way of functioning are yet not fully understood. Therefore, thorough investigations regarding their optical, mechanical and chemical nature have to be conducted. A UV-crosslinkable polymer, consisting of N-isopropylacrylamide, methacrylic acid and the UV-crosslinker 4-benzoylphenyl methacrylate was synthesized. Its composition, determined by a comprehensive NMR study, is equivalent to the composition of the monomer mixture. The chemical characteristics were preserved during the subsequently formation of hydrogel films by photo-crosslinking as proved by XPS. For the optical characterization, e.g. the degree of swelling of very thin films, the spectroscopy of coupled long range surface plasmons is introduced. Thicker films, able to guide light waves were analyzed with combined surface plasmon and optical waveguide mode spectroscopy (SPR/OWS). The evaluation of the data was facilitated by the reverse Wentzel-Kramers-Brillouin (WKB) approximation. The meshsize and proper motion of the surface anchored hydrogels were investigated by fluorescence correlation spectroscopy (FCS), micro photon correlation spectroscopy (µPCS) and SPR/OWS. The studied gels exhibit a meshsize that allowed for the diffusion of small biomolecules inside their network. For future enhancement of probing diffusants, a dye that enables FRET in FCS was immobilized in the gel and the diffusion of gold-nanoparticles embedded in the polymer solution was studied by PCS. These properties can be conveniently tuned by the crosslinking density, which depends on the irradiation dose. Additionally, protocols and components for polymer analogous reactions based on active ester chemistry of the hydrogel were developed. Based on these syntheses and investigations, the hydrogel films are applied in the fields of medical coatings as well as in biosensing as matrix and biomimetic cushion. Their non-adhesive properties were proved in cell experiments, SPR/OWS and ToF-SIMS studies. The functionality and non-fouling property of the prepared hydrogels allowed for adaption to the needs of the respective application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der Fokus dieser Arbeit liegt in dem Design, der Synthese und der Charakterisierung neuartiger photosensitiver Mikrogele und Nanopartikel als potentielle Materialien für Beladungs- und Freisetzungsanwendungen. Zur Realisierung dieses Konzepts wurden verschiedene Ansätze untersucht.Es wurden neuartige niedermolekulare lichtspaltbare Vernetzermoleküle auf der Basis von o-Nitrobenzylderivaten synthetisiert, charakterisiert und zur Herstellung von photosensitiven PMMA und PHEMA Mikrogelen verwendet. Diese sind unter Bestrahlung in organischen Lösungsmitteln quellbar und zersetzbar. Durch die Einführung anionischer MAA Gruppen in solche PHEMA Mikrogele wurde dieses Konzept auf doppelt stimuliresponsive p(HEMA-co-MAA) Mikrogele erweitert. Hierbei wurde ein pH-abhängiges Quellbarkeitsprofil mit der lichtinduzierten Netzwerkspaltung in wässrigen Medien kombiniert. Diese duale Sensitivität zu zwei zueinander orthogonalen Reizen stellt ein vielversprechendes Konzept zur Kombination einer pH-abhängigen Beladung mit einer lichtinduzierten Freisetzung von funktionellen Substanzen dar. Desweiteren wurden PAAm Mikrogele entwickelt, welche sowohl eine Sensitivität gegenüber Enzymen als auch Licht aufweisen. Dieses Verhalten wurde durch die Verwendung von (meth-)acrylatfunktionalisierten Dextranen als polymere Vernetzungsmoleküle erreicht. Das entsprechende stimuliresponsive Profil basiert auf der enzymatischen Zersetzbarkeit der Polysaccharid-Hauptkette und der Anbindung der polymerisierbaren Vinyleinheiten an diese über photospaltbare Gruppen. Die gute Wasserlöslichkeit der Vernetzermoleküle stellt einen vielversprechenden Ansatz zur Beladung solcher Mikrogele mit funktionellen hydrophilen Substanzen bereits während der Partikelsynthese dar. Ein weiteres Konzept zur Beladung von Mikrogelen basiert auf der Verwendung von photolabilen Wirkstoff-Mikrogel Konjugaten. In einem ersten Schritt zur Realisierung solch eines Ansatzes wurde ein neuartiges Monomer entwickelt. Hierbei wurde Doxorubicin über eine lichtspaltbare Gruppe an eine polymerisierbare Methacrylatgruppe angebunden. Für die Freisetzung hydrophober Substanzen in wässrigen Medien wurden polymere Photolack-Nanopartikel entwickelt, welche sich unter Bestrahlung in Wasser zersetzen. Die lichtinduzierte Änderung der Hydrophobizität des Polymers ermöglichte die Freisetzung von Nilrot durch das Auflösen der partikulären Struktur. Ein interessanter Ansatz zur Verhinderung einer unkontrollierten Freisetzung funktioneller Substanzen aus Mikrogelen ist die Einführung einer stimuliresponsiven Schale. In diesem Kontext wurden Untersuchungen zur Bildung von nicht-stimulisensitiven Schalen um vorgefertigte Mikrogelkerne und zur Synthese von Hydrogelkernen in vorgefertigten polymeren Schalen (Nanokapseln) durchgeführt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infektiöse Komplikationen im Zusammenhang mit Implantaten stellen einen Großteil aller Krankenhausinfektionen dar und treiben die Gesundheitskosten signifikant in die Höhe. Die bakterielle Kolonisation von Implantatoberflächen zieht schwerwiegende medizinische Konsequenzen nach sich, die unter Umständen tödlich verlaufen können. Trotz umfassender Forschungsaktivitäten auf dem Gebiet der antibakteriellen Oberflächenbeschichtungen ist das Spektrum an wirksamen Substanzen aufgrund der Anpassungsfähigkeit und Ausbildung von Resistenzen verschiedener Mikroorganismen eingeschränkt. Die Erforschung und Entwicklung neuer antibakterieller Materialien ist daher von fundamentaler Bedeutung.rnIn der vorliegenden Arbeit wurden auf der Basis von Polymernanopartikeln und anorganischen/polymeren Verbundmaterialien verschiedene Systeme als Alternative zu bestehenden antibakteriellen Oberflächenbeschichtungen entwickelt. Polymerpartikel finden Anwendung in vielen verschiedenen Bereichen, da sowohl Größe als auch Zusammensetzung und Morphologie vielseitig gestaltet werden können. Mit Hilfe der Miniemulsionstechnik lassen sich u. A. funktionelle Polymernanopartikel im Größenbereich von 50-500 nm herstellen. Diese wurde im ersten System angewendet, um PEGylierte Poly(styrol)nanopartikel zu synthetisieren, deren anti-adhesives Potential in Bezug auf P. aeruginosa evaluiert wurde. Im zweiten System wurden sog. kontakt-aktive kolloide Dispersionen entwickelt, welche bakteriostatische Eigenschaften gegenüber S. aureus zeigten. In Analogie zum ersten System, wurden Poly(styrol)nanopartikel in Copolymerisation in Miniemulsion mit quaternären Ammoniumgruppen funktionalisiert. Als Costabilisator diente das zuvor quaternisierte, oberflächenaktive Monomer (2-Dimethylamino)ethylmethacrylat (qDMAEMA). Die Optimierung der antibakteriellen Eigenschaften wurde im nachfolgenden System realisiert. Hierbei wurde das oberflächenaktive Monomer qDMAEMA zu einem oberflächenaktiven Polyelektrolyt polymerisiert, welcher unter Anwendung von kombinierter Miniemulsions- und Lösemittelverdampfungstechnik, in entsprechende Polyelektrolytnanopartikel umgesetzt wurde. Infolge seiner oberflächenaktiven Eigenschaften, ließen sich aus dem Polyelektrolyt stabile Partikeldispersionen ohne Zusatz weiterer Tenside ausbilden. Die selektive Toxizität der Polyelektrolytnanopartikel gegenüber S. aureus im Unterschied zu Körperzellen, untermauert ihr vielversprechendes Potential als bakterizides, kontakt-aktives Reagenz. rnAufgrund ihrer antibakteriellen Eigenschaften wurden ZnO Nanopartikel ausgewählt und in verschiedene Freisetzungssysteme integriert. Hochdefinierte eckige ZnO Nanokristalle mit einem mittleren Durchmesser von 23 nm wurden durch thermische Zersetzung des Precursormaterials synthetisiert. Durch die nachfolgende Einkapselung in Poly(L-laktid) Latexpartikel wurden neue, antibakterielle und UV-responsive Hybridnanopartikel entwickelt. Durch die photokatalytische Aktivierung von ZnO mittels UV-Strahlung wurde der Abbau der ZnO/PLLA Hybridnanopartikel signifikant von mehreren Monaten auf mehrere Wochen verkürzt. Die Photoaktivierung von ZnO eröffnet somit die Möglichkeit einer gesteuerten Freisetzung von ZnO. Im nachfolgenden System wurden dünne Verbundfilme aus Poly(N-isopropylacrylamid)-Hydrogelschichten mit eingebetteten ZnO Nanopartikeln hergestellt, die als bakterizide Oberflächenbeschichtungen gegen E. coli zum Einsatz kamen. Mit minimalem Gehalt an ZnO zeigten die Filme eine vergleichbare antibakterielle Aktivität zu Silber-basierten Beschichtungen. Hierbei lässt sich der Gehalt an ZnO relativ einfach über die Filmdicke einstellen. Weiterhin erwiesen sich die Filme mit bakteriziden Konzentrationen an ZnO als nichtzytotoxisch gegenüber Körperzellen. Zusammenfassend wurden mehrere vielversprechende antibakterielle Prototypen entwickelt, die als potentielle Implantatbeschichtungen auf die jeweilige Anwendung weiterhin zugeschnitten und optimiert werden können.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Selbstorganisation von amphiphilen Molekülen wird genutzt, um in Lösung, auf der Oberfläche, in der festen Phase und an der Flüssig/Fest-Grenzfläche nanoskopisch strukturierte Materialien zu erhalten. Ziel hierbei ist es, die Dynamik der niedermolekularen Amphiphile mit der Stabilität der hochmolekularen Amphiphile zu vereinigen, um damit die Selbstorganisation der Moleküle zu kontrollieren. Drei Konzepte zur Strukturierung von Kohlenstoff durch Selbstorganisation werden vorgestellt. Im ersten Konzept werden aus Hexaphenylbenzol-Polyethylenglykol- (HPB-PEG) und Hexa-peri-hexabenzocoronen- (HBC-PEG) Derivaten wurmähnliche bzw. faserförmige Strukturen in wässriger Lösung erhalten. Der Wassergehalt in den Hydrogelfasern aus den HPB-PEG-Derivaten kann durch das Substitutionsmuster der Amphiphile und die Länge der PEG-Ketten eingestellt werden. Die Hydrogelfasern ähneln anders als die bisherigen Verfahren, die zur Faserherstellung verwendet werden (Extrudieren, Mikrofluid-Verarbeitung oder Elektrospinning), Systemen in der Natur. Der Beweis für die Bildung von Hydrogelfasern wird mittels spezieller Methoden der polarisierten und depolarisierten dynamischen Lichtstreuung erbracht. Im zweiten Konzept werden durch Elektronenbestrahlung und Pyrolyse von 3',4',5',6'-Tetraphenyl-[1,1':2',1''-terphenyl]-4,4''-dithiol homogene Kohlenstoffmembranen mit Poren erzeugt, die Anwendung in der Filtration finden können und im dritten Konzept wird die Selbstorganisation von einem ortho-verknüpften HPB-Trimer an der Flüssig/Fest-Grenzfläche untersucht. Auf diese Weise werden hochgeordnete lamellare Strukturen erhalten. In allen drei Konzepten sind die Geometrie und die Größe der Moleküle die entscheidenden Parameter zur Erzeugung definierter Strukturen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the synthesis of surface attached hydrogel biomaterials, characterization of their properties, evaluation of structuring concepts and the investigation of these materials in the isolation of DNA from human whole blood. Photosensitive hydrogel precursor materials on the basis of hydroxyethylmethacrylate (HEMA) were synthesized by free radical polymerization. In order to obtain surface bound hydrogel films, the precursors were deposited on a suitable substrate and subsequently irradatiated with UV - light to accomplish the formation of crosslinks in the film and create surface attachment. The composition of the polymerization precursor materials was determined by comprehensive NMR and GPC studies, revealing the copolymerizationrnbehaviour of the used monomers - HEMA derivatives and the photocrosslinkerrnMABP - and their respective distribution in the hydrogel precursors. The degree of crosslinking of the hydrogels was characterized with UV/vis spectroscopy. Stress-strain measurements were conducted in order to investigate the mechanical properties of the biomaterials. Moreover, the swelling process and biomolecule adsorption properties of the hydrogels were investigated with SPR/OW spectroscopy. For this, the deposition and binding of the hydrogels on gold or SiO2 surfaces was facilitated with photocrosslinkable adhesion promotors. The produced hydrogels were mechanically rigid and stablernunder the conditions of PCR and blood lysis. Furthermore, strategies towards the increase of hydrogel surface structure and porosity with porosigens, 2D laser interference lithography and photocleavable blockcopolymers were investigated. At last, a combinatorial strategy was used for the determination of the usefulness of hydrogels for the isolation from DNA from blood. A series of functionalized hydrogel precursors were synthesized, transferred to the surface inside a PCR tube and subsequently screened in regard to DNA adsorption properties with Taqman quantitative PCR. This approach yielded a promising candidate for a functional PCR tube coating that would allow the entire DNA isolation procedure being carried out in a single reaction container.rnThereforce, the practical application of such macromolecular architectures can be envisioned to improve industrial DNA diagnostic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole or directly on the bone-forming cells. In addition, it is not known if the presentation of PTH by adding the amino acid sequence Arg-Gly-Asp (RGD) is essential for its osteopromotive effect. Local delivery of a bioactive substance at the right time and in the right concentration often constitutes a major challenge. Polyethylene glycol-based hydrogel (PEG) is a degradable vehicle developed for delivery of bioactive proteins. To enhance the mechanical stability of the PEG-bioactive substance complex, an osteoconductive bone substitute material is often needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.