983 resultados para Hydrated Ethyl Alcohol
Resumo:
Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 +/- 0.36)) exp(-39.70 +/- 1.83)/RT) s(-1) Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.
Resumo:
Objectives Based on previous screening results, the cytotoxic effect of the hexane (JDH) and ethyl acetate extracts (JDE) of the marine sponge Jaspis diastra were evaluated on HeLa cells and the present study aimed at determining their possible mechanism of cell death. Methods Nuclear staining, membrane potential change, flow cytometry analysis of cell cycle distribution and annexin V staining were undertaken to investigate the effects of JDE and JDH. Electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance were used to characterize an isolated bioactive molecule. Key findings JDE displayed an IC50 25 times more significant than the JDH. Flow cytometry analysis revealed JDE induced apoptosis in HeLa cells accompanied by the collapse of mitochondrial membrane potential. Fractionation of JDE resulted in the isolation of the known cytotoxic cyclodepsipeptide, Jaspamide. Conclusions Taking our results together suggest that JDE can be valuable for the development of anticancer drugs, especially for cervical cancer. Further investigations are currently in progress with the aim to determine and isolate other bioactive compounds from this extract.
Resumo:
Haloperidol, an antipsychotic drug, was screened for new solid crystalline phases using high throughput crystallization in pursuit of solubility improvement. Due to the highly basic nature of the API, all the solid forms with acids were obtained in the form of salts. Eleven crystalline salts in the form of oxalate (1:1), benzoate (1:1), salicylate (1:1 and 1:2), 4-hydroxybenzoate (1:1), 4-hydroxybenzoate ethyl acetate solvate (1:1:1), 3,4-dihydroxybenzoate (1:1), 3,5-dihydroxybenzoate (1:1), mesylate (1:1), besylate (1:1), and tosylate (1:1) salt were achieved. There is an insertion of carboxylate or sulfonate anion into the hydrogen bonding pattern of haloperidol. The salts with the aliphatic carboxylic acids were found to be more prone to form salt hydrates compared with aromatic carboxylate salts. All the salts were subjected to solubility measurement in water at neutral pH. There was no direct correlation observed between the solubility of the salt and its coformer. All the salts are stable at room temperature as well as after 24 h slurry experiment except the oxalate salt, which showed an unusual phase transformation from its hydrated form to the anhydrous form. A structureproperty relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and ``Atoms in Molecules'' analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O-H center dot center dot center dot O, O-H center dot center dot center dot pi, and C-H center dot center dot center dot pi. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact. (C) 2014 AIP Publishing LLC.
Resumo:
Hexaazamacrocycle (L) stabilized gold nanoparticles (AuNPs) were prepared by combining L with HAuCl4 center dot 3H(2)O in a variety of alcohol-water (1 : 1) mixtures. The dual roles of L as a reducing and stabilizing agent were exploited for the synthesis of AuNPs under the optimized ratio of L to Au3+ (2 : 1). Self-assembled gold nanofilms (AuNFs) were constructed at liquid-liquid interfaces by adding equal volumes of hexane to the dispersions of AuNPs in the alcohol-water systems. The nanofilms were formed spontaneously by shaking the two-phase mixture for a minute followed by standing. The alcohols explored for the self-assembly phenomenon were methanol, ethanol, i-propanol and t-butanol. The systems containing methanol or t-butanol resulted in AuNFs at the interfaces, whereas the other two alcohols were found not suitable and the AuNPs remained dispersed in the corresponding alcohol-water medium. The AuNFs prepared under suitable conditions were coated on a variety of surfaces by the dip and lift-off method/solvent removal approach. The AuNFs were characterized by UV-vis, SEM, TEM, AFM and contact angle measurement techniques. A coated glass-vial or cuvette was used as a catalytic reservoir for nitro-reduction reactions under ambient and aqueous conditions using NaBH4 as the reducing agent. The reduced products (amines) were extracted by aqueous work-up using ethyl acetate followed by evaporation of the organic layer; the isolated products required no further purification. The catalyst was recovered by simply decanting the reaction mixture whereupon the isolated catalyst remained coated inside the vessel. The recovered catalyst was found to be equally efficient for further catalytic cycles.
Resumo:
A pair of first and second generation poly(alkyl ether imine) dendrimers is prepared, having covalently attached cholesteryl moieties at their peripheries. The pairs in each generation differ in the alkyl-linker which constitute the dendritic core moieties, even when the number of cholesteryl moieties remains uniform in each pair. The dendrimer pairs are two first and second generation poly(ethyl ether imine) and poly(propyl ether imine) dendrimers, modified with 4 and 8 cholesteryl esters at the peripheries in each pair, respectively. The dendrimer pairs exhibit differing thermotropic mesophase properties. Microscopic, thermal and X-ray diffraction studies reveal a lamellar mesophase for the first generation ethyl-, first and second generation propyl-linker dendrimers. Whereas, the second generation ethyl-linker dendrimer exhibits a layered structure with a superimposed in-plane modulation, the length of which corresponds to a rectangular column width. The role of the dendrimer core moieties with differing linkers in modifying the mesophase properties is studied. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Carfentrazone-ethyl (CE) is a reduced risk herbicide that is currently being evaluated for the control of aquatic weeds. Greenhouse trials were conducted to determine efficacy of CE on water hyacinth ( Eichhornia crassipes (Mart.) Solms- Laub.), water lettuce ( Pistia stratiotes L.), salvinia ( Salvinia minima Baker) and landoltia (Landoltia punctata (G. Mey.) Les & D. J. Crawford ) . CE controlled water lettuce, water hyacinth and salvinia at rates less than the maximum proposed use rate of 224 g ha -1 . Water lettuce was the most susceptible to CE with an EC 90 of 26.9 and 33.0 g ha -1 in two separate trials. Water hyacinth EC 90 values were calculated to be 86.2 to 116.3 g ha -1 , and salvinia had a similar susceptibility to water hyacinth with an EC 90 of 79.1 g ha -1 . Landoltia was not adequately controlled at the rates evaluated. In addition, CE was applied to one-half of a 0.08 ha pond located in North Central, Florida to determine dissipation rates in water and hydrosoil when applied at an equivalent rate of 224 g ha -1 . The half-life of CE plus the primary metabolite, CE-chloropropionic acid, was calculated to be 83.0 h from the whole pond, and no residues were detected in water above the limit of quantification (5 μg L -1 ) 168 h after treatment. CE dissipated rapidly from the water column, did not occur in the sediment above the levels of quantification, and in greenhouse studies effectively controlled three species of aquatic weeds at relatively low rates.(PDF contains 6 pages.)
Resumo:
[ES] El objetivo de este trabajo es la descripción de los hábitos de ingesta de alcohol de una muestra de población universitaria de ambos sexos y su relación con el IMC. Aunque el elevado porcentaje de personas consumidoras de alcohol no presenta un IMC actual diferente al de los no consumidores, este patrón de comportamiento puede tener repercusiones en estadios vitales posteriores en el caso de que no haya un cambio de hábitos.
Resumo:
The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
Neste trabalho, copolímeros à base de acrilonitrila e divinilbenzeno foram sintetizados, utilizando a técnica de polimerização em suspensão, na presença de três agentes porogênicos diferentes (álcool isoamílico, metil-etil-cetona e tolueno). Esses copolímeros foram caracterizados por meio da determinação da densidade aparente, do volume e diâmetro de poros, por microscopia ótica e microscopia eletrônica de varredura e foram avaliados quanto à capacidade de inchamento em heptano e tolueno. O principal intuito dessa pesquisa foi correlacionar a formação da estrutura porosa desses materiais com os principais parâmetros de síntese (grau de diluição dos monômeros, poder solvatante do diluente e teor do agente de reticulação). Desses parâmetros, o que mais influenciou na formação da estrutura porosa desses materiais foi o poder solvatante do diluente. A teoria dos parâmetros de solubilidade de Hansen e Hildebrand foi utilizada com o intuito de fazer uma previsão das características porosas dos copolímeros à base de acrilonitrila e divinilbenzeno sintetizados na presença de três diluentes diferentes. Dentre esses diluentes, o álcool isoamílico foi o pior solvente para os copolímeros de AN-DVB, em todos os teores de agente de reticulação e em todas as diluições utilizadas. O tolueno foi o melhor solvente para os copolímeros que contêm altos teores de agente de reticulação. Estas observações estão de acordo com as previsões dos parâmetros de solubilidade de Hansen e Hildebrand. A metil-etil-cetona foi o melhor solvente para os copolímeros que contêm teores intermediários de agente de reticulação. Esta observação só está condizente com o parâmetro de solubilidade de Hansen.
Resumo:
Bipolar disorder (BD) and alcohol use disorders (AUDs) are usually comorbid, and both have been associated with significant neurocognitive impairment. Patients with the BD-AUD comorbidity (dual diagnosis) may have more severe neurocognitive deficits than those with a single diagnosis, but there is paucity of research in this area. To explore this hypothesis more thoroughly, we carried out a systematic literature review through January 2015. Eight studies have examined the effect of AUDs on the neurocognitive functioning of BD patients. Most studies found that BD patients with current or past history of comorbid AUDs show more severe impairments, especially in verbal memory and executive cognition, than their non-dual counterparts. Greater neurocognitive dysfunction is another facet of this severe comorbid presentation. Implications for clinical practice and research are discussed. Specifically, the application of holistic approaches, such as clinical staging and systems biology, may open new avenues of discoveries related to the BD-AUD comorbidity.
Resumo:
207 p.
Resumo:
Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin beta II, and alpha- and beta-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in a-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in beta-spectrin protein levels, and a significant increase in transmembranous alpha 3 (catalytic) subunit of the Na+, K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of a-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic alpha-and beta-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics