916 resultados para How To


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background External validity of study results is an important issue from a clinical point of view. From a methodological point of view, however, the concept of external validity is more complex than it seems to be at first glance. Methods Methodological review to address the concept of external validity. Results External validity refers to the question whether results are generalizable to persons other than the population in the original study. The only formal way to establish the external validity would be to repeat the study for that specific target population. We propose a three-way approach for assessing the external validity for specified target populations. (i) The study population might not be representative for the eligibility criteria that were intended. It should be addressed whether the study population differs from the intended source population with respect to characteristics that influence outcome. (ii) The target population will, by definition, differ from the study population with respect to geographical, temporal and ethnical conditions. Pondering external validity means asking the question whether these differences may influence study results. (iii) It should be assessed whether the study's conclusions can be generalized to target populations that do not meet all the eligibility criteria. Conclusion Judging the external validity of study results cannot be done by applying given eligibility criteria to a single target population. Rather, it is a complex reflection in which prior knowledge, statistical considerations, biological plausibility and eligibility criteria all have place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screening people without symptoms of disease is an attractive idea. Screening allows early detection of disease or elevated risk of disease, and has the potential for improved treatment and reduction of mortality. The list of future screening opportunities is set to grow because of the refinement of screening techniques, the increasing frequency of degenerative and chronic diseases, and the steadily growing body of evidence on genetic predispositions for various diseases. But how should we decide on the diseases for which screening should be done and on recommendations for how it should be implemented? We use the examples of prostate cancer and genetic screening to show the importance of considering screening as an ongoing population-based intervention with beneficial and harmful effects, and not simply the use of a test. Assessing whether screening should be recommended and implemented for any named disease is therefore a multi-dimensional task in health technology assessment. There are several countries that already use established processes and criteria to assess the appropriateness of screening. We argue that the Swiss healthcare system needs a nationwide screening commission mandated to conduct appropriate evidence-based evaluation of the impact of proposed screening interventions, to issue evidence-based recommendations, and to monitor the performance of screening programmes introduced. Without explicit processes there is a danger that beneficial screening programmes could be neglected and that ineffective, and potentially harmful, screening procedures could be introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the number of solutions to the Einstein equations with realistic matter sources that admit closed time-like curves (CTC's) has grown drastically, it has provoked some authors [10] to call for a physical interpretation of these seemingly exotic curves that could possibly allow for causality violations. A first step in drafting a physical interpretation would be to understand how CTC's are created because the recent work of [16] has suggested that, to follow a CTC, observers must counter-rotate with the rotating matter, contrary to the currently accepted explanation that it is due to inertial frame dragging that CTC's are created. The exact link between inertialframe dragging and CTC's is investigated by simulating particle geodesics and the precession of gyroscopes along CTC's and backward in time oriented circular orbits in the van Stockum metric, known to have CTC's that could be traversal, so the van Stockum cylinder could be exploited as a time machine. This study of gyroscopeprecession, in the van Stockum metric, supports the theory that CTC's are produced by inertial frame dragging due to rotating spacetime metrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the publication of the quality guideline ICH Q9 "Quality Risk Management" by the International Conference on Harmonization, risk management has already become a standard requirement during the life cycle of a pharmaceutical product. Failure mode and effect analysis (FMEA) is a powerful risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to biopharmaceutical processes brings about some difficulties. The proposal presented here is intended to serve as a brief but nevertheless comprehensive and detailed guideline on how to conduct a biopharmaceutical process FMEA. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. The application for such a biopharmaceutical process FMEA is widespread. It can be useful whenever a biopharmaceutical manufacturing process is developed or scaled-up, or when it is transferred to a different manufacturing site. It may also be conducted during substantial optimization of an existing process or the development of a second-generation process. According to their resulting risk ratings, process parameters can be ranked for importance and important variables for process development, characterization, or validation can be identified. LAY ABSTRACT: Health authorities around the world ask pharmaceutical companies to manage risk during development and manufacturing of pharmaceuticals. The so-called failure mode and effect analysis (FMEA) is an established risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to pharmaceutical processes that use modern biotechnology (biopharmaceutical processes) brings about some difficulties, because those biopharmaceutical processes differ from processes in mechanical and electrical industries. The proposal presented here explains how a biopharmaceutical process FMEA can be conducted. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. With the help of this guideline, different details of the manufacturing process can be ranked according to their potential risks, and this can help pharmaceutical companies to identify aspects with high potential risks and to react accordingly to improve the safety of medicines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although duodenopancreatectomy has been standardized for many years, the pathological examination of the specimen was re-described in the last years. In methodical pathological studies up to 85% had an R1 margin.1,2 These mainly involved the posterior und medial resection margin.3 As a consequence we need to optimize and standardize the pathological workup of the specimen and to extend the surgical resection, where possible without risk for the patient.

Relevância:

100.00% 100.00%

Publicador: