901 resultados para Housing -- Heating and ventilation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the spatial and temporal variation in nitrogen dioxide (NO2) levels in Guernsey and the impacts on pre-existing asthmatics. Whilst air quality in Guernsey is generally good, the levels of NO2 exceed UK standards in several locations. The evidence indicates that people suffering from asthma have exacerbation of their symptoms if exposed to elevated levels of air pollutants including NO2, although this research has never been carried out in Guernsey before. In addition, exposure assessment of individuals is rarely carried out and research in this area is limited due to the complexity of undertaking such a study, which will include a combination of exposures in the home, the workplace and ambient exposures, which vary depending on the individual daily experience. For the first time in Guernsey, this research has examined NO2 levels in correlation with asthma patient admissions to hospital, assessment of NO2 exposures in typical homes and typical workplaces in Guernsey. The data showed a temporal correlation between NO2 levels and the number of hospital admissions and the trend from 2008-2012 was upwards. Statistical analysis of the data did not show a significant linear correlation due to the small size of the data sets. Exposure assessment of individuals showed a spatial variation in exposures in Guernsey and assessment in indoor environments showed that real-time analysis of NO2 levels needs to be undertaken if indoor micro environments for NO2 are the be assessed adequately. There was temporal and spatial variation in NO2 concentrations measured using diffusion tubes, which provide a monthly mean value, and analysers measuring NO2 concentrations in real time. The research shows that building layout and design are important factors for good air flow and ventilation and the dispersion of NO2 indoors. Environmental Health Officers have statutory responsibilities for ambient air quality, hygiene of buildings and workplace environments and this role needs to be co-ordinated with healthcare professionals to improve health outcomes for asthmatics. The outcome of the thesis was the development of a risk management framework for pre-existing asthmatics at work for use by regulators of workplaces and an information leaflet to assist in improving health outcomes for asthmatics in Guernsey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis presents experimental results, simulations, and theory on turbulence excited in magnetized plasmas near the ionosphere’s upper hybrid layer. The results include: The first experimental observations of super small striations (SSS) excited by the High-Frequency Auroral Research Project (HAARP) The first detection of high-frequency (HF) waves from the HAARP transmitter over a distance of 16x10^3 km The first simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein waves associated with all nearby gyroharmonics Simulation results that indicate that the resulting bulk electron heating near the upper hybrid (UH) resonance is caused primarily by electron Bernstein waves parametrically excited near the first gyroharmonic. On the experimental side we present two sets of experiments performed at the HAARP heating facility in Alaska. In the first set of experiments, we present the first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We detected density structures smaller than 30 cm for the first time through a combination of satellite and ground based measurements. In the second set of experiments, we present the results of a novel diagnostic implemented by the Ukrainian Antarctic Station (UAS) in Verdansky. The technique allowed the detection of the HAARP signal at a distance of nearly 16 Mm, and established that the HAARP signal was injected into the ionospheric waveguide by direct scattering off of dekameter-scale density structures induced by the heater. On the theoretical side, we present results of Vlasov simulations near the upper hybrid layer. These results are consistent with the bulk heating required by previous work on the theory of the formation of descending artificial ionospheric layers (DIALs), and with the new observations of DIALs at HAARP’s upgraded effective radiated power (ERP). The simulations that frequency sweeps, and demonstrate that the heating changes from a bulk heating between gyroharmonics, to a tail acceleration as the pump frequency is swept through the fourth gyroharmonic. These simulations are in good agreement with experiments. We also incorporate test particle simulations that isolate the effects of specific wave modes on heating, and we find important contributions from both electron Bernstein waves and upper hybrid waves, the former of which have not yet been detected by experiments, and have not been previously explored as a driver of heating. In presenting these results, we analyzed data from HAARP diagnostics and assisted in planning the second round of experiments. We integrated the data into a picture of experiments that demonstrated the detection of SSS, hysteresis effects in simulated electromagnetic emission (SEE) features, and the direct scattering of the HF pump into the ionospheric waveguide. We performed simulations and analyzed simulation data to build the understanding of collisionless heating near the upper hybrid layer, and we used these simulations to show that bulk electron heating at the upper hybrid layer is possible, which is required by current theories of DAIL formation. We wrote a test particle simulation to isolate the effects of electron Bernstein waves and upper hybrid layers on collisionless heating, and integrated this code to work with both the output of Vlasov simulations and the input for simulations of DAIL formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examines the process of placemaking in LeDroit Park, a residential Washington, DC, neighborhood with a historic district at its core. Unpacking the entwined physical and social evolution of the small community within the context of the Nation’s Capital, this analysis provides insight into the role of urban design and development as well as historic designation on shaping collective identity. Initially planned and designed in 1873 as a gated suburb just beyond the formal L’Enfant-designed city boundary, LeDroit Park was intended as a retreat for middle and upper-class European Americans from the growing density and social diversity of the city. With a mixture of large romantic revival mansions and smaller frame cottages set on grassy plots evocative of an idealized rural village, the physical design was intentionally inwardly-focused. This feeling of refuge was underscored with a physical fence that surrounded the development, intended to prevent African Americans from nearby Howard University and the surrounding neighborhood, from using the community’s private streets to access the City of Washington. Within two decades of its founding, LeDroit Park was incorporated into the District of Columbia, the surrounding fence was demolished, and the neighborhood was racially integrated. Due to increasingly stringent segregation laws and customs in the city, this period of integration lasted less than twenty years, and LeDroit Park developed into an elite African American enclave, using the urban design as a bulwark against the indignities of a segregated city. Throughout the 20th century housing infill and construction increased density, yet the neighborhood never lost the feeling of security derived from the neighborhood plan. Highlighting the architecture and street design, neighbors successfully received historic district designation in 1974 in order to halt campus expansion. After a stalemate that lasted two decades, the neighborhood began another period of transformation, both racial and socio-economic, catalyzed by a multi-pronged investment program led by Howard University. Through interviews with long-term and new community members, this investigation asserts that the 140-year development history, including recent physical interventions, is integral to placemaking, shaping the material character as well as the social identity of residents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(English)The Swedish industrial sector has overcome the oil crisis and has maintained the energy use constant even though the production has grown. This has been achieved thanks to the development of several energy policies, by the Swedish government, towards the 2020 goals. This thesis carries on this path and performs an energy audit for an old industrial building in Gävle (Sweden) in order to propose different energy efficiency measures to use less energy while maintaining the thermal comfort. The building is in quite a bad shape and some of the areas are unused making them a waste of money. By means of the invoices provided by different companies, the information from the staff and some measures that have been carried out in-situ, the energy balance has been calculated from where conclusions have been drawn. Although it is an industrial building, the study is not going to be focused in the industrial process but in the building’s envelope and support processes, since the unit combines both production and office areas. Therefore, the energy balance is divided in energy supplies (district heating, free heating and sun irradiation) and energy losses (transmission, ventilation hot tap water and infiltrations). The results show that the most important supply is that of the DH whereas the most important losses are the transmission and infiltration. Thus, the measures proposed are focused on the reduction of this relevant parameters. The most important measures are the renovation of the windows, heating systems valves and the ventilation. The glazing of the dwelling is old and some of it is broken accounting for quite a large amount of the losses. The radiator valves are not properly working and there does not exist any temperature control. Therefore the installation of thermostatic valves turns out to be a must. Moreover, some part of the building has no mechanical ventilation but conserves the ducts. These could be utilized if they are connected to the workshop’s ventilation which is capable of generating sufficient flow for the entire building. Finally, although other measures could also be carried out, the ones proposed appear to be the essential ones. A further analysis should be carried out in order to analyze the payback time or investment capability of the company so as to decide between one measure or another. A market study for possible new tenants for the unused parts of the building is also advisable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gary, Indiana is a city with indelible ties to industrial paternalism. Founded in 1906 by United States Steel Corporation to house workers of the trust’s showpiece mill, the emergence of this model company town was both the culmination of lessons learned from its predecessors’ mistakes and innovative corporate planning. U.S. Steel’s Progressive Era adaptation of welfare capitalism characterized the young city through a combination of direct community involvement and laissez-faire social control. This thesis examines the reactionary implementation of paternalist policies in Gary between 1906 and 1930 through the purviews of three elements under corporate influence: housing, education, and social welfare. Each category demonstrates how both the corporation and citizenry affected and adapted Gary’s physical and cultural landscape, public perceptions, and community identity. Parallel to the popular narrative throughout is that of Gary’s African-American community, and the controversial circumstances of this population’s segregated development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

County jurisdictions in America are increasingly exercising self-government in the provision of public community services through the context of second order federalism. In states exercising this form of contemporary governance, county governments with “reformed” policy-making structures and professional management practices, have begun to rival or surpass municipalities in the delivery of local services with regional implications such as environmental protection (Benton 2002, 2003; Marando and Reeves, 1993). The voter referendum, a form of direct democracy, is an important component of county land preservation and environmental protection governmental policies. The recent growth and success of land preservation voter referendums nationwide reflects an increase in citizen participation in government and their desire to protect vacant land and its natural environment from threats of over-development, urbanization and sprawl, loss of open space and farmland, deterioration of ecosystems, and inadequate park and recreational amenities. The study’s design employs a sequential, mixed method. First, a quantitative approach employs the Heckman two-step model. It is fitted with variables for the non-random sample of 227 voter referendum counties and all non-voter referendum counties in the U.S. from 1988 to 2009. Second, the qualitative data collected from the in-depth investigation of three South Florida county case studies with twelve public administrator interviews is transformed for integration with the quantitative findings. The purpose of the qualitative method is to complement, explain and enrich the statistical analysis of county demographic, socio-economic, terrain, regional, governance and government, political preference, environmentalism, and referendum-specific factors. The research finds that government factors are significant in terms of the success of land preservation voter referendums; more specifically, the presence of self-government authority (home rule charter), a reformed structure (county administrator/manager or elected executive), and environmental interest groups. In addition, this study concludes that successful counties are often located coastal, exhibit population and housing growth, and have older and more educated citizens who vote democratic in presidential elections. The analysis of case study documents and public administrator interviews finds that pragmatic considerations of timing, local politics and networking of regional stakeholders are also important features of success. Further research is suggested utilizing additional public participation, local government and public administration factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearly a third of UK gas and electricity is used in homes, of which 80% is for space heating and hot water provision. Rising consumer bills, concerns about climate change and the surge in personal digital technology use has provoked the development of intelligent domestic heating controls. Whilst the need for having suitable control of the home heating system is essential for reducing domestic energy use, these heating controls rely on appropriate user interaction to achieve a saving and it is unclear whether these ‘smart’ heating controls enhance the use of domestic heating or reduce energy demand. This paper describes qualitative research undertaken with a small sample of UK householders to understand how people use new heating controls installed in their homes and what the requirements are for improved smart heating control design. The paper identifies, against Nielsen’s usability heuristics, the divergence between the householder’s use, understanding and expectations of the heating system and the actual design of the system. Digital and smart heating control systems should be designed to maximise usability so that they can be effectively used for efficient heating control by all users. The research highlights the need for development of new systems to readdress the needs of users and redefine the system requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accounting for around 40% of the total final energy consumption, the building stock is an important area of focus on the way to reaching the energy goals set for the European Union. The relatively small share of new buildings makes renovation of existing buildings possibly the most feasible way of improving the overall energy performance of the building stock. This of course involves improvements on the climate shell, for example by additional insulation or change of window glazing, but also installation of new heating systems, to increase the energy efficiency and to fit the new heat load after renovation. In the choice of systems for heating, ventilation and air conditioning (HVAC), it is important to consider their performance for space heating as well as for domestic hot water (DHW), especially for a renovated house where the DHW share of the total heating consumption is larger. The present study treats the retrofitting of a generic single family house, which was defined as a reference building in a European energy renovation project. Three HVAC retrofitting options were compared from a techno-economic point of view: A) Air-to-water heat pump (AWHP) and mechanical ventilation with heat recovery (MVHR), B) Exhaust air heat pump (EAHP) with low-temperature ventilation radiators, and C) Gas boiler and ventilation with MVHR. The systems were simulated for houses with two levels of heating demand and four different locations: Stockholm, Gdansk, Stuttgart and London. They were then evaluated by means of life cycle cost (LCC) and primary energy consumption. Dynamic simulations were done in TRNSYS 17. In most cases, system C with gas boiler and MVHR was found to be the cheapest retrofitting option from a life cycle perspective. The advantage over the heat pump systems was particularly clear for a house in Germany, due to the large discrepancy between national prices of natural gas and electricity. In Sweden, where the price difference is much smaller, the heat pump systems had almost as low or even lower life cycle costs than the gas boiler system. Considering the limited availability of natural gas in Sweden, systems A and B would be the better options. From a primary energy point of view system A was the best option throughout, while system B often had the highest primary energy consumption. The limited capacity of the EAHP forced it to use more auxiliary heating than the other systems did, which lowered its COP. The AWHP managed the DHW load better due to a higher capacity, but had a lower COP than the EAHP in space heating mode. Systems A and C were notably favoured by the air heat recovery, which significantly reduced the heating demand. It was also seen that the DHW share of the total heating consumption was, as expected, larger for the house with the lower space heating demand. This confirms the supposition that it is important to include DHW in the study of HVAC systems for retrofitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the aging building stock of Europe, there is great potential of saving energy through renovation and upgrading to modern standards, and to thereby approach the internationally set goals of lower energy use. This paper concerns the planned renovation of the building envelope and HVAC systems in a multi-family house in Ludwigsburg, Germany. Five systemic HVAC solutions were compared, with special focus on two systems: A) Balanced ventilation with HRC + Micro heat pump, and B) Forced exhaust ventilation + Heat pump with exhaust air HRC + Ventilation radiators. Given the predicted heating demand and ventilation rate of the house after renovation, the performance of the two systems was compared, alongside three common systems for reference. Calculations were made using TMF Energi, a tool developed by SP Technical Research Institute of Sweden.    Both systems A and B were found to have the lowest electrical energy use together with the ground source heat pump system for the assumed conditions. For other assumptions, including different climate and degree of insulation, some differences between these three systems were noted. Most significant is the increased electrical use of system B for higher heating loads due to limitations in the power available from the heat source, exhaust air, which is dependent on the ventilation rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergency repair activity under the South Carolina Housing Trust Fund program is designed to assist very low‐income homeowners in making needed and necessary repairs to their owner‐occupied homes to eliminate life, health and safety issues to the occupant. This document explains emergency repair activity guidelines, eligibility requirements for properties, rehabilitation construction guidelines and payments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Carolina State Housing Finance and Development Authority publishes an annual report on the South Carolina Housing Trust Fund, a state-funded program designed to provide financial assistance in the development, rehabilitation and acquisition of affordable workforce housing for low-income households throughout the state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kenia liegt in den Äquatorialtropen von Ostafrika und ist als ein weltweiter Hot-Spot für Aflatoxinbelastung insbesondere bei Mais bekannt. Diese toxischen und karzinogenen Verbindungen sind Stoffwechselprodukte von Pilzen und so insbesondere von der Wasseraktivität abhängig. Diese beeinflusst sowohl die Trocknung als auch die Lagerfähigkeit von Nahrungsmitteln und ist somit ein wichtiger Faktor bei der Entwicklung von energieeffizienten und qualitätsorientierten Verarbeitungsprozessen. Die vorliegende Arbeit hat sich zum Ziel gesetzt, die Veränderung der Wasseraktivität während der konvektiven Trocknung von Mais zu untersuchen. Mittels einer Optimierungssoftware (MS Excel Solver) wurde basierend auf sensorerfassten thermo-hygrometrischen Daten der gravimetrische Feuchteverlust von Maiskolben bei 37°C, 43°C und 53°C vorausberechnet. Dieser Bereich stellt den Übergang zwischen Niedrig- und Hochtemperaturtrocknung dar. Die Ergebnisse zeigen deutliche Unterschiede im Verhalten der Körner und der Spindel. Die Trocknung im Bereich von 35°C bis 45°C kombiniert mit hohen Strömungsgeschwindigkeiten (> 1,5 m / s) begünstigte die Trocknung der Körner gegenüber der Spindel und kann daher für eine energieeffiziente Trocknung von Kolben mit hohem Anfangsfeuchtegehalt empfohlen werden. Weitere Untersuchungen wurden zum Verhalten unterschiedlicher Schüttungen bei der bei Mais üblichen Satztrocknung durchgeführt. Entlieschter und gedroschener Mais führte zu einem vergrößerten Luftwiderstand in der Schüttung und sowohl zu einem höheren Energiebedarf als auch zu ungleichmäßigerer Trocknung, was nur durch einen erhöhten technischen Aufwand etwa durch Mischeinrichtungen oder Luftumkehr behoben werden könnte. Aufgrund des geringeren Aufwandes für die Belüftung und die Kontrolle kann für kleine landwirtschaftliche Praxisbetriebe in Kenia daher insbesondere die Trocknung ganzer Kolben in ungestörten Schüttungen empfohlen werden. Weiterhin wurde in der Arbeit die Entfeuchtung mittels eines Trockenmittels (Silikagel) kombiniert mit einer Heizquelle und abgegrenztem Luftvolumen untersucht und der konventionellen Trocknung gegenüber gestellt. Die Ergebnisse zeigten vergleichbare Entfeuchtungsraten während der ersten 5 Stunden der Trocknung. Der jeweilige Luftzustand bei Verwendung von Silikagel wurde insbesondere durch das eingeschlossene Luftvolumen und die Temperatur beeinflusst. Granulierte Trockenmittel sind bei der Maistrocknung unter hygienischen Gesichtspunkten vorteilhaft und können beispielsweise mit einfachen Öfen regeneriert werden, so dass Qualitätsbeeinträchtigungen wie bei Hochtemperatur- oder auch Freilufttrocknung vermieden werden können. Eine hochwertige Maistrocknungstechnik ist sehr kapitalintensiv. Aus der vorliegenden Arbeit kann aber abgeleitet werden, dass einfache Verbesserungen wie eine sensorgestützte Belüftung von Satztrocknern, der Einsatz von Trockenmitteln und eine angepasste Schüttungshöhe praktikable Lösungen für Kleinbauern in Kenia sein können. Hierzu besteht, ggf. auch zum Aspekt der Verwendung regenerativer Energien, weiterer Forschungsbedarf.