955 resultados para High frequency
Resumo:
The multimode operation of an optical parametric oscillator (OPO) operating below threshold is calculated. We predict that squeezing can be generated in a comb that is limited only by the phase matching bandwidth of the OPO. Effects of technical noise on the squeezing spectrum are investigated. It is shown that maximal squeezing can be obtained at high frequency even in the presence of seed laser noise and cavity length fluctuations. Furthermore the spectrum obtained by detuning the laser frequency off OPO cavity resonance is calculated.
Resumo:
In this paper, a new method for characterizing the newborn heart rate variability (HRV) is proposed. The central of the method is the newly proposed technique for instantaneous frequency (IF) estimation specifically designed for nonstationary multicomponen signals such as HRV. The new method attempts to characterize the newborn HRV using features extracted from the time–frequency (TF) domain of the signal. These features comprise the IF, the instantaneous bandwidth (IB) and instantaneous energy (IE) of the different TF components of the HRV. Applied to the HRV of both normal and seizure suffering newborns, this method clearly reveals the locations of the spectral peaks and their time-varying nature. The total energy of HRV components, ET and ratio of energy concentrated in the low-frequency (LF) to that in high frequency (HF) components have been shown to be significant features in identifying the HRV of newborn with seizures.
Resumo:
In this paper, we propose features extracted from the heart rate variability (HRV) based on the first and second conditional moments of time-frequency distribution (TFD) as an additional guide for seizure detection in newborn. The features of HRV in the low frequency band (LF: 0-0.07 Hz), mid frequency band (MF: 0.07-0.15 Hz), and high frequency band (HF: 0.15-0.6 Hz) have been obtained by means of the time-frequency analysis using the modified-B distribution (MBD). Results of ongoing time-frequency research are presented. Based on our preliminary results, the first conditional moment of HRV which is also known as the mean/central frequency in the LF band and the second conditional moment of HRV which is also known as the variance/instantaneous bandwidth (IB) in the HF band can be used as a good feature to discriminate the newborn seizure from the non-seizure
Resumo:
The optimum bandwidth for shallow, high-resolution seismic reflection differs from that required for conventional petroleum reflection. An understanding of this issue is essential for correct choice of acquisition instrumentation. Numerical modelling of simple Bowen Basin coal structures illustrates that, for high-resolution imaging, it is important to accurately record all frequencies up to the limit imposed by earth scattering. On the contrary, the seismic image is much less dependent on frequencies at the lower end of the spectrum. These quantitative observations support the use of specialised high-frequency geophones for high-resolution seismic imaging. Synthetic seismic inversion trials demonstrate that, irrespective of the bandwidth of the seismic data, additional low-frequency impedance control is essential for accurate inversion. Inversion provides no compelling argument for the use of conventional petroleum geophones in the high-resolution arena.
Resumo:
In Parkinson's disease, subthalamic nucleus (STN) neurons burst fire with increased periodicity and synchrony. This may entail abnormal release of glutamate, the major source of which in STN is cortical afferents. Indeed, the cortico-subthalamic pathway is implicated in the emergence of excessive oscillations, which are reduced, as are symptoms, by dopamine-replacement therapy or deep brain stimulation (DBS) targeted to STN. Here we hypothesize that glutamatergic synapses in the STN may be differentially modulated by low-frequency stimulation (LFS) and high-frequency stimulation (HFS), the latter mimicking deep brain stimulation. Recordings of evoked and spontaneous excitatory post synaptic currents (EPSCs) were made from STN neurons in brain slices obtained from dopamine-intact and chronically dopamine-depleted adult rats. HFS had no significant effect on evoked (e) EPSC amplitude in dopamine-intact slices (104.4±8.0%) but depressed eEPSCs in dopamine-depleted slices (67.8±6.2%). Conversely, LFS potentiated eEPSCs in dopamine-intact slices (126.4±8.1%) but not in dopamine-depleted slices (106.7±10.0%). Analyses of paired-pulse ratio, coefficient of variation, and spontaneous EPSCs suggest that the depression and potentiation have a presynaptic locus of expression. These results indicate that the synaptic efficacy in dopamine-intact tissue is enhanced by LFS. Furthermore, the synaptic efficacy in dopamine-depleted tissue is depressed by HFS. Therefore the therapeutic effects of DBS in Parkinson's disease appear mediated, in part, by glutamatergic cortico-subthalamic synaptic depression and implicate dopamine-dependent increases in the weight of glutamate synapses, which would facilitate the transfer of pathological oscillations from the cortex.
Resumo:
In this study I investigated the mechanisms of neuronal network oscillatory activity in rat M1 using pharmacological manipulations and electrical stimulation protocols, employing the in vitro brain slice technique in rat and magnetoencephalography (MEG) in man. Co-application of kainic acid and carbachol generated in vitro beta oscillatory activity in all layers in M1. Analyses indicated that oscillations originated from deep layers and indicated significant involvement of GABAA receptors and gap junctions. A modulatory role of GABAB, NMDA, and dopamine receptors was also evident. Intracellular recordings from fast-spiking (FS) GABAergic inhibitory cells revealed phase-locked action potentials (APs) on every beta cycle. Glutamatergic excitatory regular-spiking (RS) and intrinsically-bursting (IB) cells both received phase locked inhibitory postsynaptic potentials, but did not fire APs on every cycle, suggesting the dynamic involvement of different pools of neurones in the overall population oscillations. Stimulation evoked activity at high frequency (HFS; 125Hz) evoked gamma oscillations and reduced ongoing beta activity. 20Hz stimulation promoted theta or gamma oscillations whilst 4Hz stimulation enhanced beta power at theta frequency. I also investigated the modulation of pathological slow wave (theta and beta) oscillatory activity using magnetoencephalography. Abnormal activity was suppressed by sub-sedative doses of GABAA receptor modulator zolpidem and the observed desynchronising effect correlated well with improved sensorimotor function. These studies indicate a fundamental role for inhibitory neuronal networks in the patterning beta activity and suggest that cortical HFS in PD re-patterns abnormally enhanced M1 network activity by modulating the activity of FS cells. Furthermore, pathological oscillation may be common to many neuropathologies and may be an important future therapeutic target.
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
In this paper we will demonstrate the improved BER performance of doubly differential phase shift keying in a coherent optical packet switching scenario while still retaining the benefits of high frequency offset tolerance. © OSA 2014.
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.
Resumo:
Three experiments investigated the dynamics of auditory stream segregation. Experiment 1 used a 2.0-s constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence reduced reported test-sequence segregation substantially. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets buildup, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only 3 tone cycles - this contrasts with the more gradual build-up typically observed for alternating sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ∼10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an on-going, pre-established stream and that a deviant tone may reduce segregation by disrupting this capture. © 2013 Acoustical Society of America.
Resumo:
Lake Analyzer is a numerical code coupled with supporting visualization tools for determining indices of mixing and stratification that are critical to the biogeochemical cycles of lakes and reservoirs. Stability indices, including Lake Number, Wedderburn Number, Schmidt Stability, and thermocline depth are calculated according to established literature definitions and returned to the user in a time series format. The program was created for the analysis of high-frequency data collected from instrumented lake buoys, in support of the emerging field of aquatic sensor network science. Available outputs for the Lake Analyzer program are: water temperature (error-checked and/or down-sampled), wind speed (error-checked and/or down-sampled), metalimnion extent (top and bottom), thermocline depth, friction velocity, Lake Number, Wedderburn Number, Schmidt Stability, mode-1 vertical seiche period, and Brunt-Väisälä buoyancy frequency. Secondary outputs for several of these indices delineate the parent thermocline depth (seasonal thermocline) from the shallower secondary or diurnal thermocline. Lake Analyzer provides a program suite and best practices for the comparison of mixing and stratification indices in lakes across gradients of climate, hydro-physiography, and time, and enables a more detailed understanding of the resulting biogeochemical transformations at different spatial and temporal scales.
Resumo:
We report on generation of harmonic oscillations with frequencies of hundreds of MHz and radio-frequency linewidth of 13 Hz in unidirectional ring laser oscillator. This high stability makes these oscillators a suitable substitute for existing quartz resonators used in high frequency optoelectronics applications.
Resumo:
Mainstream electrical stimulation therapies, e.g., spinal cord stimulation (SCS) and deep brain stimulation, use pulse trains that are delivered at rates no higher than 200 Hz. In recent years, stimulation of nerve fibers using kilohertz-frequency (KHF) signals has received increased attention due to the potential to penetrate deeper in the tissue and to the ability to block conduction of action potentials. As well, there are a growing number of clinical applications that use KHF waveforms, including transcutaneous electrical stimulation (TES) for overactive bladder and SCS for chronic pain. However, there is a lack of fundamental understanding of the mechanisms of action of KHF stimulation. The goal of this research was to analyze quantitatively KHF neurostimulation.
We implemented a multilayer volume conductor model of TES including dispersion and capacitive effects, and we validated the model with in vitro measurements in a phantom constructed from dispersive materials. We quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. In addition, we performed in vivo experiments and applied direct stimulation to the sciatic nerve of cats and rats. We measured electromyogram and compound action potential activity evoked by pulses, TAMS and modified versions of TAMS in which we varied the amplitude of the carrier. Nerve fiber activation using TAMS showed no difference with respect to activation with conventional pulse for carrier frequencies of 20 kHz and higher, regardless the size of the carrier. Therefore, TAMS with carrier frequencies >20 kHz does not offer any advantage over conventional pulses, even with larger amplitudes of the carrier, and this has implications for design of waveforms for efficient and effective TES.
We developed a double cable model of a dorsal column (DC) fiber to quantify the responses of DC fibers to a novel KHF-SCS signal. We validated the model using in vivo recordings of the strength-duration relationship and the recovery cycle of single DC fibers. We coupled the fiber model to a model of SCS in human and applied the KHF-SCS signal to quantify thresholds for activation and conduction block for different fiber diameters at different locations in the DCs. Activation and block thresholds increased sharply as the fibers were placed deeper in the DCs, and decreased for larger diameter fibers. Activation thresholds were > 5 mA in all cases and up to five times higher than for conventional (~ 50 Hz) SCS. For fibers exhibiting persistent activation, the degree of synchronization of the firing activity to the KHF-SCS signal, as quantified using the vector strength, was low for a broad amplitude range, and the dissimilarity between the activities in pairs of fibers, as quantified using the spike time distance, was high and decreased for more closely positioned fibers. Conduction block thresholds were higher than 30 mA for all fiber diameters at any depth and well above the amplitudes used clinically (0.5 – 5 mA). KHF-SCS appears to activate few, large, superficial fibers, and the activated fibers fire asynchronously to the stimulation signal and to other activated fibers.
The outcomes of this work contribute to the understanding of KHF neurostimulation by establishing the importance of the tissue filtering properties on the distribution of potentials, assessing quantitatively the impact of KHF stimulation on nerve fiber excitation, and developing and validating a detailed model of a DC fiber to characterize the effects of KHF stimulation on DC axons. The results have implications for design of waveforms for efficient and effective nerve fiber stimulation in the peripheral and central nervous system.
Resumo:
Efforts to push the performance of transistors for millimeter-wave and microwave applications have borne fruit through device size scaling and the use of novel material systems. III-V semiconductors and their alloys hold a distinct advantage over silicon because they have much higher electron mobility which is a prerequisite for high frequency operation. InGaAs/InP pseudomorphic heterojunction bipolar transistors (HBTs) have demonstrated fT of 765 GHz at room temperature and InP based high electron mobility transistors (HEMTs) have demonstrated fMax of 1.2 THz. The 6.1 A lattice family of InAs, GaSb, AlSb covers a wide variety of band gaps and is an attractive future material system for high speed device development. Extremely high electron mobilities ~ 30,000 cm^2 V^-1s^-1 have been achieved in modulation doped InAs-AlSb structures. The work described in this thesis involves material characterization and process development for HEMT fabrication on this material system.