952 resultados para Helicity method, subtraction method, numerical methods, random polarizations
Resumo:
Dynamical systems that involve impacts frequently arise in engineering. This Letter reports a study of such a system at microscale that consists of a nonlinear resonator operating with an unilateral impact. The microresonators were fabricated on silicon-on-insulator wafers by using a one-mask process and then characterised by using the capacitively driving and sensing method. Numerical results concerning the dynamics of this vibro-impact system were verified by the experiments. Bifurcation analysis was used to provide a qualitative scenario of the system steady-state solutions as a function of both the amplitude and the frequency of the external driving sinusoidal voltage. The results show that the amplitude of resonant peak is levelled off owing to the impact effect and that the bandwidth of impacting is dependent upon the nonlinearity and the operating conditions.
Resumo:
Queueing theory is an effective tool in the analysis of canputer camrunication systems. Many results in queueing analysis have teen derived in the form of Laplace and z-transform expressions. Accurate inversion of these transforms is very important in the study of computer systems, but the inversion is very often difficult. In this thesis, methods for solving some of these queueing problems, by use of digital signal processing techniques, are presented. The z-transform of the queue length distribution for the Mj GY jl system is derived. Two numerical methods for the inversion of the transfom, together with the standard numerical technique for solving transforms with multiple queue-state dependence, are presented. Bilinear and Poisson transform sequences are presented as useful ways of representing continuous-time functions in numerical computations.
Resumo:
This thesis presents a theoretical investigation of the application of advanced modelling formats in high-speed fibre lightwave systems. The first part of this work focuses on numerical optimisation of dense wavelength division multiplexing (DWDM) system design. We employ advanced spectral domain filtering techniques and carrier pulse reshaping. We then apply these optimisation methods to investigate spectral and temporal domain characteristics of advanced modulation formats in fibre optic telecommunication systems. Next we investigate numerical methods used in detecting and measuring the system performance of advanced modulation formats. We then numerically study the combination of return-to-zero differential phase-shift keying (RZ-DPSK) with advanced photonic devices. Finally we analyse the dispersion management of Nx40 Gbit/s RZ-DPSK transmission applied to a commercial terrestrial lightwave system.
Spatial pattern analysis of beta-amyloid (A beta) deposits in Alzheimer disease by linear regression
Resumo:
The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.
Resumo:
Objective - To develop understandings of the nature and influence of trust in the safe management of medication within mental health services. Setting - Mental health services in the UK. Method - Qualitative methods were applied through focus groups across three different categories of service user—older adult, adults living in the community and forensic services. An inductive thematic analysis was carried out, using the method of constant comparison derived from grounded theory. Main Outcome - Measure Participants’ views on the key factors influencing trust and the role of trust in safe medication management. Results - The salient factors impacting trust were: the therapeutic relationship; uncertainty and vulnerability; and social control. Users of mental health services may be particularly vulnerable to adverse events and these can damage trust. Conclusion - Safe management of medication is facilitated by trust. However, this trust may be difficult to develop and maintain, exposing service users to adverse events and worsening adherence. Practice and policy should be oriented towards developing trust.
Resumo:
2000 Mathematics Subject Classification: 11D75, 11D85, 11L20, 11N05, 11N35, 11N36, 11P05, 11P32, 11P55.
Resumo:
As congestion management strategies begin to put more emphasis on person trips than vehicle trips, the need for vehicle occupancy data has become more critical. The traditional methods of collecting these data include the roadside windshield method and the carousel method. These methods are labor-intensive and expensive. An alternative to these traditional methods is to make use of the vehicle occupancy information in traffic accident records. This method is cost effective and may provide better spatial and temporal coverage than the traditional methods. However, this method is subject to potential biases resulting from under- and over-involvement of certain population sectors and certain types of accidents in traffic accident records. In this dissertation, three such potential biases, i.e., accident severity, driver’s age, and driver’s gender, were investigated and the corresponding bias factors were developed as needed. The results show that although multi-occupant vehicles are involved in higher percentages of severe accidents than are single-occupant vehicles, multi-occupant vehicles in the whole accident vehicle population were not overrepresented in the accident database. On the other hand, a significant difference was found between the distributions of the ages and genders of drivers involved in accidents and those of the general driving population. An information system that incorporates adjustments for the potential biases was developed to estimate the average vehicle occupancies (AVOs) for different types of roadways on the Florida state roadway system. A reasonableness check of the results from the system shows AVO estimates that are highly consistent with expectations. In addition, comparisons of AVOs from accident data with the field estimates show that the two data sources produce relatively consistent results. While accident records can be used to obtain the historical AVO trends and field data can be used to estimate the current AVOs, no known methods have been developed to project future AVOs. Four regression models for the purpose of predicting weekday AVOs on different levels of geographic areas and roadway types were developed as part of this dissertation. The models show that such socioeconomic factors as income, vehicle ownership, and employment have a significant impact on AVOs.
Resumo:
As congestion management strategies begin to put more emphasis on person trips than vehicle trips, the need for vehicle occupancy data has become more critical. The traditional methods of collecting these data include the roadside windshield method and the carousel method. These methods are labor-intensive and expensive. An alternative to these traditional methods is to make use of the vehicle occupancy information in traffic accident records. This method is cost effective and may provide better spatial and temporal coverage than the traditional methods. However, this method is subject to potential biases resulting from under- and over-involvement of certain population sectors and certain types of accidents in traffic accident records. In this dissertation, three such potential biases, i.e., accident severity, driver¡¯s age, and driver¡¯s gender, were investigated and the corresponding bias factors were developed as needed. The results show that although multi-occupant vehicles are involved in higher percentages of severe accidents than are single-occupant vehicles, multi-occupant vehicles in the whole accident vehicle population were not overrepresented in the accident database. On the other hand, a significant difference was found between the distributions of the ages and genders of drivers involved in accidents and those of the general driving population. An information system that incorporates adjustments for the potential biases was developed to estimate the average vehicle occupancies (AVOs) for different types of roadways on the Florida state roadway system. A reasonableness check of the results from the system shows AVO estimates that are highly consistent with expectations. In addition, comparisons of AVOs from accident data with the field estimates show that the two data sources produce relatively consistent results. While accident records can be used to obtain the historical AVO trends and field data can be used to estimate the current AVOs, no known methods have been developed to project future AVOs. Four regression models for the purpose of predicting weekday AVOs on different levels of geographic areas and roadway types were developed as part of this dissertation. The models show that such socioeconomic factors as income, vehicle ownership, and employment have a significant impact on AVOs.
Resumo:
With Tweet volumes reaching 500 million a day, sampling is inevitable for any application using Twitter data. Realizing this, data providers such as Twitter, Gnip and Boardreader license sampled data streams priced in accordance with the sample size. Big Data applications working with sampled data would be interested in working with a large enough sample that is representative of the universal dataset. Previous work focusing on the representativeness issue has considered ensuring the global occurrence rates of key terms, be reliably estimated from the sample. Present technology allows sample size estimation in accordance with probabilistic bounds on occurrence rates for the case of uniform random sampling. In this paper, we consider the problem of further improving sample size estimates by leveraging stratification in Twitter data. We analyze our estimates through an extensive study using simulations and real-world data, establishing the superiority of our method over uniform random sampling. Our work provides the technical know-how for data providers to expand their portfolio to include stratified sampled datasets, whereas applications are benefited by being able to monitor more topics/events at the same data and computing cost.
Resumo:
New methods of nuclear fuel and cladding characterization must be developed and implemented to enhance the safety and reliability of nuclear power plants. One class of such advanced methods is aimed at the characterization of fuel performance by performing minimally intrusive in-core, real time measurements on nuclear fuel on the nanometer scale. Nuclear power plants depend on instrumentation and control systems for monitoring, control and protection. Traditionally, methods for fuel characterization under irradiation are performed using a “cook and look” method. These methods are very expensive and labor-intensive since they require removal, inspection and return of irradiated samples for each measurement. Such fuel cladding inspection methods investigate oxide layer thickness, wear, dimensional changes, ovality, nuclear fuel growth and nuclear fuel defect identification. These methods are also not suitable for all commercial nuclear power applications as they are not always available to the operator when needed. Additionally, such techniques often provide limited data and may exacerbate the phenomena being investigated. This thesis investigates a novel, nanostructured sensor based on a photonic crystal design that is implemented in a nuclear reactor environment. The aim of this work is to produce an in-situ radiation-tolerant sensor capable of measuring the deformation of a nuclear material during nuclear reactor operations. The sensor was fabricated on the surface of nuclear reactor materials (specifically, steel and zirconium based alloys). Charged-particle and mixed-field irradiations were both performed on a newly-developed “pelletron” beamline at Idaho State University's Research and Innovation in Science and Engineering (RISE) complex and at the University of Maryland's 250 kW Training Reactor (MUTR). The sensors were irradiated to 6 different fluences (ranging from 1 to 100 dpa), followed by intensive characterization using focused ion beam (FIB), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to investigate the physical deformation and microstructural changes between different fluence levels, to provide high-resolution information regarding the material performance. Computer modeling (SRIM/TRIM) was employed to simulate damage to the sensor as well as to provide significant information concerning the penetration depth of the ions into the material.
Resumo:
Any safety assessment of a permanent repository for radioactive waste has to include an analysis of the geomechanical stability of the repository and integrity of the geological barrier. Such an analysis is based on geological and engineering geological studies of the site, on laboratory and in-situ experiments, and on numerical calculations. Central part of the safety analysis is the geomechanical modelling of the host rock. The model should simulate as closely as possible the conditions at the site and the behaviour of the rock (e.g., geology, repository geometry, initial rock stress, and constitutive models). On the basis of the geomechanical model numerical calculations are carried out using the finite-element method and an appropriate discretization of the repository and the host rock. The assessment of the repository stability and the barrier integrity is based on calculated stress and deformation and on the behaviour of the host rock measured and observed in situ. An example of the geomechanical analysis of the stability and integrity of the Bartensieben mine, a former salt mine, is presented. This mine is actually used as a repository for low level radioactive waste. The example includes all necessary steps of geological, engineering geological, and geotechnical investigations.
Resumo:
Health effects resulting from dust inhalation in occupational environments may be more strongly associated with specific microbial components, such as fungi, than to the particles. The aim of the present study is to characterize the occupational exposure to the fungal burden in four different occupational settings (two feed industries, one poultry and one waste sorting industry), presenting results from two air sampling methods – the impinger collector and the use of filters. In addition, the equipment used for the filter sampling method allowed a more accurate characterization regarding the dimension of the collected fungal particles (less than 2.5 μm size). Air samples of 300L were collected using the impinger Coriolis μ air sampler. Simultaneously, the aerosol monitor (DustTrak II model 8532, TSI®) allowed assessing viable microbiological material below the 2.5 μm size. After sampling, filters were immersed in 300 mL of sterilized distilled water and agitated for 30 min at 100 rpm. 150 μl from the sterilized distilled water were subsequently spread onto malt extract agar (2%) with chloramphenicol (0.05 g/L). All plates were incubated at 27.5 ºC during 5–7 days. With the impinger method, the fungal load ranged from 0 to 413 CFU.m-3 and with the filter method, ranged from 0 to 64 CFU.m-3. In one feed industry, Penicillium genus was the most frequently found genus (66.7%) using the impinger method and three more fungi species/genera/complex were found. The filter assay allowed the detection of only two species/genera/complex in the same industry. In the other feed industry, Cladosporium sp. was the most found (33.3%) with impinger method and three more species/genera/complex were also found. Through the filter assay four fungi species/genera/complex were found. In the assessed poultry, Rhyzopus sp. was the most frequently detected (61.2%) and more three species/genera/complex were isolated. Through the filter assay, only two fungal species/genera/complex were found. In the waste sorting industry Penicillium sp. was the most prevalent (73.6%) with the impinger method, being isolated two more different fungi species/genera/complex. Through the filter assay only Penicillium sp. was found. A more precise determination of occupational fungal exposure was ensured, since it was possible to obtain information regarding not only the characterization of fungal contamination (impinger method), but also the size of dust particles, and viable fungal particles, that can reach the worker ́s respiratory tract (filters method). Both methods should be used in parallel to enrich discussion regarding potential health effects of occupational exposure to fungi.
Resumo:
We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O&Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O&Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath.
Resumo:
En este trabajo se realizan simulaciones de excavaciones profundas en suelos de origen aluvial en la ciudad de Sabaneta, mediante el empleo de modelos en elementos finitos integrados por el software PLAXIS® -- Los desplazamientos horizontales son comparados con mediciones de inclinómetros instalados en el trasdós del muro diafragma anclado del proyecto Centro Comercial Mayorca Fase III, localizado en el municipio de Sabaneta, Antioquia -- Finalmente, se concluye acerca de la sensibilidad de los parámetros más relevantes según el modelo constitutivo empleado y la viabilidad en su aplicación para la solución del problema evaluado