946 resultados para Heat-Shock Proteins
Resumo:
O operon groESL de C. crescentus apresenta dupla regulação. A indução deste operon por choque térmico é dependente do fator sigma de choque térmico σ32. A temperaturas fisiológicas, a expressão de groESL apresenta regulação temporal durante o ciclo celular da bactéria e o controle envolve a proteína repressora HrcA e o elemento CIRCE (controlling inverted repeat of chaperonin expression). Para estudar a atividade da proteína repressora in vitro, produzimos e purificamos de E. coli a HrcA de C. creseentus contendo uma cauda de histidinas e a ligação especifica ao elemento CIRCE foi analisada em ensaios de migração retardada em gel de poliacrilamida (EMRGP). A quantidade de DNA retardada pela ligação a HrcA aumentou significativamente na presença de GroES/GroEL, sugerindo que estas proteínas modulam a atividade de HrcA. Corroboração desta modulação foi obtida analisando fusões de transcrição da região regulatória de groESL com o gene lacZ, em células de C. crescentus produzindo diferentes quantidades de GroES/EL. HrcA contendo as substituições Pro81 AJa e Arg87Ala, aminoácidos que se localizam no domínio putativo de ligação ao DNA da proteína, mostraram ser deficientes na ligação a CIRCE, tanto in vitro como in vivo. Em adição, HrcA Ser56Ala expressa na mesma célula juntamente com a proteína selvagem produziu um fenótipo dominante-negativo, indicando que a HrcA de C. crescentus liga-se a CIRCE como um oligômero, provavelmente um dímero. As tentativas de obtenção de mutantes nulos para os genes groESL ou dnaKJ falharam, indicando que as proteínas GroES/GroEL e DnaK/DnaJ são essenciais em C. crescentus, mesmo a temperaturas normais. Foram então construídas no laboratório as linhagens mutantes condicionais SG300 e SG400 de C. crescentus, onde a expressão de groESL e de dnaKJ, respectivamente, está sob controle de um promotor induzido por xilose (PxyIX). Estas linhagens foram caracterizadas quanto á sua morfologia em condições permissivas ou restritivas, assim como quanto à capacidade de sobrevivência frente a vários tipos de estresse. As células da linhagem SG300, exauridas de GroES/GroEL, são resistentes ao choque térmico a 42°C e são capazes de adquirir alguma termotolerância. Entretanto, estas células são sensíveis aos estresses oxidativo, salino e osmótico. As células da linhagem SG400, exauridas de DnaKlJ, são sensíveis ao choque térmico, à exposição a etanol e ao congelamento, e são incapazes de adquirir termotolerância. Além disso, tanto as células exauridas de GroES/GroEL quanto as exauridas de DnaK/DnaJ apresentam problemas na sua morfologia. As células de SG300 exauridas de GroES/GroEL formam filamentos longos que possuem constrições fundas e irregulares. As células de SG400 exauridas de DnaK/DnaJ são apenas um pouco mais alongadas que as células pré-divisionais selvagens e a maioria das células não possuem septo. Estas observações indicam bloqueio da divisão celular, que deve ocorrer em diferentes estágios em cada linhagem.
Resumo:
Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, beta-glucan (MacroGard®) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast beta-1,3/1,6-glucan in form of MacroGard® at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, trypsin activity and size measurements. Along with the feeding of beta-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard® fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by beta-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-alpha and il-1beta was observed. We conclude that the administration of beta-glucan induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot.
Resumo:
Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.
Resumo:
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.
Resumo:
In this study tetraploid Marsupenaeus japonicus (Bate) embryos were produced by preventing the first division in mitosis. The effectiveness of temperature and chemical shocks for producing tetraploid M. japonicus were assessed when applied at different times postspawning and for different durations. Tetraploid M. japonicus embryos (spawned at 27 degrees C) were produced by heat shocks at 35 degrees C and 36 degrees C in three and eight spawning samples respectively, and a cold shock at 5 degrees C in a single spawning sample. All temperature shocks inducing tetraploidy were applied 18-23 min postspawning for a 5-10 min duration. The percentage of spawnings successfully inducing tetraploid embryos (i.e., frequency of induction) ranged from 33.33% to 66.67% for the 21, 22 and 23 min postspawning heat shock treatment regimes. The percentage of tetraploid embryos within an induction (i.e., induction rate), as determined by flow cytometry, ranged from 8.82% to 98.12% (ave. S.E.) (34.4 +/- 21.4%) for the 35 degrees C shock treatments, from 13.12% to 61.02% (35.0 +/- 5.0%) for the 36 degrees C shock treatments and was 15% for the 5 degrees C cold shock treatment. No tetraploids were produced for spawnings that received heat shocks above 36 degrees C or below 35 degrees C, or for cold shocks above 5 degrees C for any of the tested postspawning treatment and duration times. Chemical shock with 150 mu M 6-dimethylaminopurine did not result in tetraploid M. japonicus embryos at any of the tested postspawning treatment times and durations. Tetraploid M. japonicus embryos were nonviable, with no tetraploid larvae being detected by flow cytometry. Based on our results heat shocking of M. japonicus embryos at 36 degrees C, 23 min postspawning for a 5-10 min duration is the most effective means to produce tetraploids through inhibition of the first mitotic division (taking into consideration the importance of frequency and induction rate equally).
Resumo:
There is a growing interest in “medical gasses” for their antibacterial and anti-inflammatory properties. Hydrogen sulfide (H2S), a member of the family of gasotransmitters, is in fact increasingly being recognized as an important signaling molecule, but its precise role in the regulation of the inflammatory response is still not clear. For this reason, the aim of the first part of this thesis was to investigate the effects of H2S on the expression of pro-inflammatory cytokines, such as MCP-1, by using an in vitro model composed by both primary monocytes-derived macrophages cultures and the human monocytic cell line U937 infected with Mycoplasma fermentans, a well-known pro-inflammatory agent. In our experiments, we observed a marked increase in the production of pro-inflammatory cytokines in infected cells. In particular, MCP-1 was induced both at the RNA and at the protein level. To test the effects of H2S on infected cells, we treated the cells with two different H2S donors (NaHS and GYY4137), showing that both H2S treatments had anti-inflammatory effects in Mycoplasma-infected cells: the levels of MCP-1, both mRNA expression and protein production, were reduced. Our subsequent studies aimed at understanding the molecular mechanisms responsible for these effects, focused on two specific molecular pathways, both involved in inflammation: the NF-κB and the Nrf2 pathway. After treatment with pharmacological inhibitors, we demonstrated that Mycoplasma fermentans induces MCP-1 expression through the TLR-NF-κB pathway with the nuclear translocation of its subunits, while treatment with H2S completely blocked the nuclear translocation of NF-κB heterodimer p65/p50. Then, once infected cells were treated with H2S donors, we observed an increased protective effect of Nrf2 and also a decrease in ROS production. These results highlight the importance of H2S in reducing the inflammatory process caused by Mycoplasma fermentans. To this regard, it should be noted that several projects are currently ongoing to develop H2S-releasing compounds as candidate drugs capable of alleviating cell deterioration and to reduce the rate of decline in organ function. In the second part of this study, we investigated the role of Mycoplasma infection in cellular transformation. Infectious agents are involved in the etiology of many different cancers and a number of studies are still investigating the role of microbiota in tumor development. Mycoplasma has been associated with some human cancers, such as prostate cancer and non-Hodgkin’s lymphoma in HIV-seropositive people, and its potential causative role and molecular mechanisms involved are being actively investigated. To this regard, in vitro studies demonstrated that, upon infection, Mycoplasma suppresses the transcriptional activity of p53, key protein in the cancer suppression. As a consequence, infected cells were less susceptible to apoptosis and proliferated more than the uninfected cells. The mechanism(s) responsible for the Mycoplasma-induced inhibitory effect on p53 were not determined. Aim of the second part of this thesis was to better understand the tumorigenic role of the microorganism, by investigating more in details the effect(s) of Mycoplasma on p53 activity in an adenocarcinoma HCT116 cell line. Treatment of Mycoplasma-infected cells with 5FU or with Nutlin, two molecules that induce p53 activity, resulted in cellular proliferation comparable to untreated controls. These results suggested that Mycoplasma infection inhibited p53 activity. Immunoprecipitation of p53 with specific antibodies, and subsequent Gas Chromatography and Mass Spectroscopy (GC-MS) assays, allowed us to identify several Mycoplasma-specific proteins interacting with p53, such as DnaK, a prokaryotic heat shock protein and stress inducible chaperones. In cells transfected with DnaK we observed i) reduced p53 protein levels; ii) reduced activity and expression of p21, Bax and PUMA, iii) a marked increase in cells leaving G1 phase. Taken together, these data show an interaction between the human p53 and the Mycoplasma protein DnaK, with the consequent decreased p53 activity and decreased capability to respond to DNA damage and prevent cell proliferation. Our data indicate that Mycoplasma could be involved in cancer formation and the mechanism(s) has the potential to be a target for cancer diagnosis and treatment(s).
Resumo:
Advanced glycation end-products (AGEs) are linked to aging and correlated diseases. The aim of present study was to evaluate oxidative stress related parameters in J774A.1 murine macrophage cells during chronic exposure to a subtoxic concentration of AGE (5% ribose-glycated serum (GS)) and subsequently for 48 h to a higher dose (10% GS). No effects on cell viability were evident in either experimental condition. During chronic treatment, glycative markers (free and bound pentosidine) increased significantly in intra- and extracellular environments, but the production and release of thiobarbituric acid reactive substances (TBARs), as an index of lipid peroxidation, underwent a time-dependent decrease. Exposure to 10% GS evidenced that glycative markers rose further, while TBARs elicited a cellular defence against oxidative stress. Nonadapted cultures showed an accumulation of AGEs, a marked oxidative stress, and a loss of viability. During 10% GS exposure, reduced glutathione levels in adapted cultures remained constant, as did the oxidized glutathione to reduced glutathione ratio, while nonadapted cells showed a markedly increased redox ratio. A constant increase of heat shock protein 70 (HSP70) mRNA was observed in all experimental conditions. On the contrary, HSP70 expression became undetectable for a longer exposure time; this could be due to the direct involvement of HSP70 in the refolding of damaged proteins. Our findings suggest an adaptive response of macrophages to subtoxic doses of AGE, which could constitute an important factor in the spread of damage to other cellular types during aging.Key words: in vitro cytotoxicity, AGE, pentosidine, glycoxidation, oxidative stress, TBARs.
Resumo:
Eukaryotic genomes contain repetitive DNA sequences. This includes simple repeats and more complex transposable elements (TEs). Many TEs reach high copy numbers in the host genome, owing to their amplification abilities by specific mechanisms. There is growing evidence that TEs contribute to gene transcriptional regulation. However, excess of TE activity may lead to reduced genome stability. Therefore, TEs are suppressed by the transcriptional gene silencing machinery via specific chromatin modifications. In contrary, effectiveness of the epigenetic silencing mechanisms imposes risk for TE survival in the host genome. Therefore, TEs may have evolved specific strategies for bypassing epigenetic control and allowing the emergence of new TE copies. Recent studies suggested that the epigenetic silencing can be, at least transiently, attenuated by heat stress in A. thaliana. Heat stress induced strong transcriptional activation of COPIA78 family LTR-retrotransposons named ONSEN, and even their transposition in mutants deficient in siRNA-biogenesis. ONSEN transcriptional activation was facilitated by the presence of heat responsive elements (HREs) within the long terminal repeats, which serve as a binding platform for the HEAT SHOCK FACTORs (HSFs). This thesis focused on the evolution of ONSEN heat responsiveness in Brassicaceae. By using whole-transcriptome sequencing approach, multiple Arabidopsis lyrata ONSENs with conserved heat response were found and together with ONSENs from other Brassicaceae were used to reconstruct the evolution of ONSEN HREs. This indicated ancestral situation with two, in palindrome organized, HSF binding motifs. In the genera Arabidopsis and Ballantinia, a local duplication of this locus increased number of HSF binding motifs to four, forming a high-efficiency HRE. In addition, whole transcriptome analysis revealed novel heat-responsive TE families COPIA20, COPIA37 and HATE. Notably, HATE represents so far unknown COPIA family which occurs in several Brassicaceae species but is absent in A. thaliana. Putative HREs were identified within the LTRs of COPIA20, COPIA37 and HATE of A. lyrata, and could be preliminarily validated by transcriptional analysis upon heat induction in subsequent survey of Brassicaeae species. Subsequent phylogenetic analysis indicated a repeated evolution of heat responsiveness within Brassicaceae COPIA LTR-retrotransposons. This indicates that acquisition of heat responsiveness may represent a successful strategy for survival of TEs within the host genome.
Resumo:
Climate may affect broiler production, especially where there are heat waves, which may cause high mortality rates due to the heat stress. Heat wave prediction and characterization may allow early mitigation actions to be taken. Data Mining is one of the tools used for such a characterization, particularly when a large number of variables is involved. The objective of this study was to classify heat waves that promote broiler chicken mortality in poultry houses equipped with minimal environmental control. A single day of heat, a heat-shock day, is capable of producing high broiler mortality. In poultry houses equipped with fans and evaporative cooling, the characterization of heat waves affecting broiler mortality between 29 days of age and market age presented 89.34% Model Accuracy and 0.73 Class Precision for high mortality. There was no influence on high mortality (HM) of birds between 29 and 31 days of age. Maximum temperature humidity index (THI) above 30.6 ºC was the main characteristic of days when there was a heat wave, causing high mortality in broilers older than 31 days. The high mortality of broilers between 31 and 40 days of age occurred when maximum THI was above 30.6 ºC and maximum temperature of the day was above 34.4 ºC. There were two main causes of high mortality of broilers older than 40 days: 1) maximum THI above 30.6 ºC and minimum THI equal or lower than 15.5 ºC; 2) maximum THI above 30.6 ºC, minimum THI lower than 15.5 ºC, and the time of maximum temperature later than 15:00h. The heat wave influence on broiler mortality lasted an average of 2.7 days.
Resumo:
The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.
Epidemiology and immunopathogenesis of Chlamydia trachomatis infections in Australian subpopulations
Resumo:
Hayabusa, an unmanned Japanese spacecraft, was launched to study and collect samples from the surface of the asteroid 25143 Itokawa. In June 2010, the Hayabusa spacecraft completed it’s seven year voyage. The spacecraft and the sample return capsule (SRC) re-entered the Earth’s atmosphere over the central Australian desert at speeds on the order of 12 km/s. This provided a rare opportunity to experimentally investigate the radiative heat transfer from the shock-compressed gases in front of the sample return capsule at true-flight conditions. This paper reports on the results of observations from a tracking camera situated on the ground about 100 km from where the capsule experienced peak heating during re-entry.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.
Resumo:
The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: (1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running (-10% gradient) at 60% VO2max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E(2), leukotriene B(4) and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P<0.05) after all three trials. Plasma prostaglandin E(2) concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B(4) did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher (P<0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage
Resumo:
The aims of this study were to examine the plasma concentrations of inflammatory mediators including cytokines induced by a single bout of eccentric exercise and again 4 weeks later by a second bout of eccentric exercise of the same muscle group. Ten untrained male subjects performed two bouts of the eccentric exercise involving the elbow flexors (6 sets of 5 repetitions) separated by four weeks. Changes in muscle soreness, swelling, and function following exercise were compared between the bouts. Blood was sampled before, immediately after, 1 h, 3 h, 6 h, 24 h (1 d), 48 h (2 d), 72 h (3 d), 96 h (4 d) following exercise bout to measure plasma creatine kinase (CK) activity, plasma concentrations of myoglobin (Mb), interleukin (IL)-1beta, IL-1 receptor antagonist (IL-1ra), IL-4, IL-6, IL-8, IL-10, IL-12p40, tumor necrosis factor (TNF)-alpha, granulocyte colony-stimulating factor (G-CSF), myeloperoxidase (MPO), prostaglandin E2 (PGE2), heat shock protein (HSP) 60 and 70. After the first bout, muscle soreness increased significantly, and there was also significant increase in upper arm circumference; muscle function decreased and plasma CK activity and Mb concentration increased significantly. These changes were significantly smaller after the second bout compared to the first bout, indicating muscle adaptation to the repeated bouts of the eccentric exercise. Despite the evidence of greater muscle damage after the first bout, the changes in cytokines and other inflammatory mediators were quite minor, and considerably smaller than that following endurance exercise. These results suggest that eccentric exercise-induced muscle damage is not associated with the significant release of cytokines into the systemic circulation. After the first bout, plasma G-CSF concentration showed a small but significant increase, whereas TNF-alpha and IL-8 showed significant decreases compared to the pre-exercise values. After the second bout, there was a significant increase in IL-10, and a significant decrease in IL-8. In conclusion, although there was evidence of severe muscle damage after the eccentric exercise, this muscle damage was not accompanied by any large changes in plasma cytokine concentrations. The minor changes in systemic cytokine concentration found in this study might reflect more rapid clearance from the circulation, or a lack of any significant metabolic or oxidative demands during this particular mode of exercise. In relation to the adaptation to the muscle damage, the anti-inflammatory cytokine IL-10 might work as one of the underlying mechanisms of action.