947 resultados para Heart and kidney adaptations
Resumo:
Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.
Resumo:
Purpose: To analyze the therapeutic indications for off-label use of rituximab, the available evidence for its use, the outcomes, and the cost. Methods: This was a retrospective analysis of patients treated with rituximab for off-label indications from January 2007 to December 2009 in two tertiary hospitals. Information on patient characteristics, medical conditions, and therapeutic responses was collected from medical records. Available evidence for the efficacy of rituximab in each condition was reviewed, and the cost of treatment was calculated. Results: A total of 101 cases of off-label rituximab use were analyzed. The median age of the patients involved was 53 [interquartile range (IQR) 37.5-68.0] years; 55.4 % were women. The indications for prescribing rituximab were primarily hematological diseases (46 %), systemic connective tissue disorders (27 %), and kidney diseases (20 %). Available evidence supporting rituximab treatment for these indications mainly came from individual cohort studies (53.5 % of cases) and case series (25.7 %). The short-term outcome (median 3 months, IQR 2-4 months) was a complete response in 38 % of cases and partial response in 32.6 %. The highest short-term responses were observed for systemic lupus erythematosus and membranous glomerulonephritis, and the lowest was for neuromyelitis optica, idiopathic thrombocytopenic purpura, and miscellaneous indications. Some response was maintained in long-term follow-up (median 23 months IQR 12-30months) in 69.2%of patients showing a short-term response. Median cost per patient was 5,187.5 (IQR 5,187.5-7,781.3). Conclusions: In our study, off-label rituximab was mainly used for the treatment of hematological, kidney, and systemic connective tissue disorders, and the response among our patient cohort was variable depending on the specific disease. The level of evidence supporting the use of rituximab for these indications was low and the cost was very high. We conclude that more clinical trials on the off-label use of rituximab are needed, although these may be difficult to conduct in some rare diseases. Data from observational studies may provide useful information to assist prescribing in clinical practice.
Resumo:
A large part of the mammalian genome is transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators of gene expression. Distinct molecular mechanisms allow lncRNAs either to activate or to repress gene expression, thereby participating in the regulation of cellular and tissue function. LncRNAs, therefore, have important roles in healthy and diseased hearts, and might be targets for therapeutic intervention. In this Review, we summarize the current knowledge of the roles of lncRNAs in cardiac development and ageing. After describing the definition and classification of lncRNAs, we present an overview of the mechanisms by which lncRNAs regulate gene expression. We discuss the multiple roles of lncRNAs in the heart, and focus on the regulation of embryonic stem cell differentiation, cardiac cell fate and development, and cardiac ageing. We emphasize the importance of chromatin remodelling in this regulation. Finally, we discuss the therapeutic and biomarker potential of lncRNAs.
Resumo:
OBJECTIVE: Renal resistive index (RRI) varies directly with renal vascular stiffness and pulse pressure. RRI correlates positively with arteriolosclerosis in damaged kidneys and predicts progressive renal dysfunction. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular (CV) markers, CV outcomes and mortality. In this study we hypothesize that increased RRI is associated with high levels of dp-ucMGP. DESIGN AND METHOD: We recruited participants via a multi-center family-based cross-sectional study in Switzerland exploring the role of genes and kidney hemodynamics in blood pressure regulation. Dp-ucMGP was quantified in plasma samples by sandwich ELISA. Renal doppler sonography was performed using a standardized protocol to measure RRIs on 3 segmental arteries in each kidney. The mean of the 6 measures was reported. Multiple regression analysis was performed to estimate associations between RRI and dp-ucMGP adjusting for sex, age, pulse pressure, mean pressure, renal function and other CV risk factors. RESULTS: We included 1035 participants in our analyses. Mean values were 0.64 ± 0.06 for RRI and 0.44 ± 0.21 (nmol/L) for dp-ucMGP. RRI was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, pulse pressure, mean pressure, heart rate, renal function, low and high density lipoprotein, smoking status, diabetes, blood pressure and cholesterol lowering drugs, and history of CV disease (P < 0.001). CONCLUSIONS: RRI is independently and positively associated with high levels of dp-ucMGP after adjustment for pulse pressure and common CV risk factors. Further studies are needed to determine if vitamin K supplementation can have a positive effect on renal vascular stiffness and kidney function.
Resumo:
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Resumo:
BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness.
Resumo:
AIMS: Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart. METHODS AND RESULTS: In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis. CONCLUSIONS: Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasis.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.
Resumo:
BACKGROUND AND OBJECTIVES: Allelic variants in UMOD, the gene coding for uromodulin, are associated with rare tubulointerstitial kidney disorders and risk of CKD and hypertension in the general population. The factors associated with uromodulin excretion in the normal population remain largely unknown, and were therefore explored in this study. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Urinary uromodulin excretion was measured using a validated ELISA in two population-based cohorts that included more than 6500 individuals. The Swiss Kidney Project on Genes in Hypertension study (SKIPOGH) included 817 adults (mean age±SD, 45±17 years) who underwent renal ultrasonography and performed a 24-hour urine collection. The Cohorte Lausannoise study included 5706 adults (mean age, 53±11 years) with fresh spot morning urine samples. We calculated eGFRs using the CKD-Epidemiology Collaboration formula and by 24-hour creatinine clearance. RESULTS: In both studies, positive associations were found between uromodulin and urinary sodium, chloride, and potassium excretion and osmolality. In SKIPOGH, 24-hour uromodulin excretion (median, 41 [interquartile range, 29-57] mg/24 h) was positively associated with kidney length and volume and with creatinine excretion and urine volume. It was negatively associated with age and diabetes. Both spot uromodulin concentration and 24-hour uromodulin excretion were linearly and positively associated (multivariate analyses) with eGFR<90 ml/min per 1.73 m(2). CONCLUSION: Age, creatinine excretion, diabetes, and urinary volume are independent clinical correlates of urinary uromodulin excretion. The associations of uromodulin excretion with markers of tubular functions and kidney dimensions suggest that it may reflect tubule activity in the general population.
Resumo:
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.
Resumo:
Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.
Resumo:
Extracorporeal assistances are exponentially used for patients, with acute severe but reversible heart or lung failure, to provide more prolonged support to bridge patients to heart and/or lung transplantation. However, experience of use of extracorporeal assistance for pulmonary resection is limited outside lung transplantation. Airways management with standard mechanical ventilation system may be challenging particularly in case of anatomical reasons (single lung), presence of respiratory failure (ARDS), or complex tracheo-bronchial resection and reconstruction. Based on the growing experience during lung transplantation, more and more surgeons are now using such devices to achieve good oxygenation and hemodynamic support during such challenging cases. We review the different extracorporeal device and attempt to clarify the current practice and indications of extracorporeal support during pulmonary resection.
Resumo:
LncRNAs are transcripts greater than 200 nucleotides in length with no apparent coding potential. They exert important regulatory functions in the genome. Their role in cardiac fibrosis is however unexplored. To identify IncRNAs that could modulate cardiac fibrosis, we profiled the long non-coding transcriptome in the infarcted mouse heart, and identified 1500 novel IncRNAs. These IncRNAs have unique characteristics such as high tissue and cell type specificity. Their expression is highly correlated with parameters of cardiac dimensions and function. The majority of these novel IncRNAs are conserved in human. Importantly, human IncRNAs appear to be differentially expressed in heart disease. Using a computational pipeline, we identified a super-enhancer-associated IncRNA, which is dynamically expressed after myocardial infarction. We named this particular transcript Wisper for «Wisp2 super-enhancer- derived IncRNA ». Interestingly, Wisper expression is overexpressed in cardiac fibroblasts as compared to cardiomyocytes or to fibroblasts isolated from other organs than the heart. The importance of Wisper in the biology of fibroblasts was demonstrated in knockdown experiments. Differentiation of cardiac fibroblast into myofibroblasts in vitro is significantly impaired upon Wisper knockdown. Wisper downregulation in cardiac fibroblasts results in a dramatic reduction of fibrotic gene expression, a diminished cell proliferation and an increase in apoptotic cell death. In vivo, depletion of Wisper during the acute phase of the response to infarction is detrimental via increasing the risk of cardiac rupture. On the other hand, Wisper knockdown following infarction in a prevention study reduces fibrosis and preserves cardiac function. Since WISPER is detectable in the human heart, where it is associated with severe cardiac fibrosis, these data suggest that Wisper could represent a novel therapeutic target for limiting the extent of the fibrotic response in the heart. -- Les long ARN non-codants (IncRNAs) sont des ARN de plus de 200 nucléotides qui ne codent pas pour des protéines. Ils exercent d'importantes fonctions dans le génome. Par contre, leur importance dans le développement de la fibrose cardiaque n'a pas été étudiée. Pour identifier des IncRNAs jouant un rôle dans ce processus, le transcriptome non-codant a été étudié dans le coeur de'souris après un infarctus du myocarde. Nous avons découverts 1500 nouveaux IncRNAs. Ces transcrits ont d'uniques caractéristiques. En particulier ils sont extrêmement spécifiques de sous-populations de cellules cardiaques. Par ailleurs, leur expression est remarquablement corrélée avec les paramètres définissant les dimensions du coeur et la fonction cardiaque. La majorité de ces IncRNAs sont conservés chez l'humain. Certains sont modulés dans des pathologies cardiaques. En utilisant une approche bioinformatique, nous avons identifié un IncRNA qui est associé à des séquences amplificatrices et qui est particulièrement enrichi dans les fibroblastes cardiaques. Ce transcrit a été nommé Wisper pour «Wisp2 super-enhancer-derived IncRNA ». L'importance de Wisper dans la biologie des fibroblastes cardiaques est démontrée dans des expériences de déplétion. En l'absence de Wisper, l'expression de protéines impliquées dans le développement de la fibrose est dramatiquement réduite dans les fibroblastes cardiaques. Ceux-ci montrent une prolifération réduite. Le niveau d'apoptose est largement augmenté. In vivo, la déplétion de Wisper pendant la phase aiguë de l'infarctus rehausse le risque de rupture cardiaque. Au contraire, la réduction de l'expression de Wisper pendant la phase chronique diminue la fibrose cardiaque et améliore la fonction du coeur. Puisque Wisper est exprimé dans le coeur humain, ce transcrit représente une nouvelle cible thérapeutique pour limiter la réponse fibrotique dans le coeur.