428 resultados para Harness racing
Resumo:
The supply side of the food security engine is the way we farm. The current engine of conventional tillage farming is faltering and needs to be replaced. This presentation will address supply side issues of agriculture to meet future agricultural demands for food and industry using the alternate no-till Conservation Agriculture (CA) paradigm (involving no-till farming with mulch soil cover and diversified cropping) that is able to raise productivity sustainably and efficiently, reduce inputs, regenerate degraded land, minimise soil erosion, and harness the flow of ecosystem services. CA is an ecosystems approach to farming capable of enhancing not only the economic and environmental performance of crop production and land management, but also promotes a mindset change for producing ‘more from less’, the key attitude towards sustainable production intensification. CA is now spreading globally in all continents at an annual rate of 10 Mha and covers some 157 Mha of cropland. Today global agriculture produces enough food to feed three times the current population of 7.21 billion. In 1976, when the world population was 4.15 billion, world food production far exceeded the amount necessary to feed that population. However, our urban and industrialised lifestyle leads to wastage of food of some 30%-40%, as well as waste of enormous amount of energy and protein while transforming crop-based food into animal-derived food; we have a higher proportion of people than ever before who are obese; we continue to degrade our ecosystems including much of our agricultural land of which some 400 Mha is reported to be abandoned due to severe soil and land degradation; and yields of staple cereals appear to have stagnated. These are signs of unsustainability at the structural level in the society, and it is at the structural level, for both supply side and demand side, that we need transformed mind sets about production, consumption and distribution. CA not only provides the possibility of increased crop yields for the low input smallholder farmer, it also provides a pro-poor rural and agricultural development model to support agricultural intensification in an affordable manner. For the high output farmer, it offers greater efficiency (productivity) and profit, resilience and stewardship. For farming anywhere, it addresses the root causes of agricultural land degradation, sub-optimal ecological crop and land potentials or yield ceilings, and poor crop phenotypic expressions or yield gaps. As national economies expand and diversify, more people become integrated into the economy and are able to access food. However, for those whose livelihoods continue to depend on agriculture to feed themselves and the rest of the world population, the challenge is for agriculture to produce the needed food and raw material for industry with minimum harm to the environment and the society, and to produce it with maximum efficiency and resilience against abiotic and biotic stresses, including those arising from climate change. There is growing empirical and scientific evidence worldwide that the future global supplies of food and agricultural raw materials can be assured sustainably at much lower environmental and economic cost by shifting away from conventional tillage-based food and agriculture systems to no-till CA-based food and agriculture systems. To achieve this goal will require effective national and global policy and institutional support (including research and education).
Resumo:
ABSTRACT: Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.
Resumo:
and creatine kinase muscle (CKM) (g.22999655C>A) genes have been associated with optimum racing distance and muscle development and racing performance in Thoroughbred horses, respectively. Considering that, since its formation, the Quarter Horse breed has received important genetic influence from the English breed, the genes cited become important candidates for athletic performance in the racing line of the American breed. An SNP in the equine doublesex and mab-3-related transcription factor 3 (DMRT3) gene (g.22999655C>A) has been described, which is responsible for the gait phenotype in homozygous individuals. Using a sample of 296 Quarter Horses of the racing line and 68 animals of the cutting line, the objective of this study was to compare the frequencies of the three SNPs cited above between a random subsample of animals of the cutting line (n ¼ 20) and animals with extreme phenotypes for racing performance (n ¼ 20 per extreme phenotype). The MSTN SNP showed practically no variation, with the observation of only one heterozygous animal (CT) in the cutting line, suggesting that this gene has been under great selective pressure within the racing segment. The CKM gene variant studied was found to be polymorphic, but no significant associates were observed between its alleles and the different lines or groups. Two animals carrying the CA heterozygous DMRT3 genotype were identified in the group with poor racing performance and one in the cutting line, indicating that this variant can be a limiting factor for the development of greater speeds.
Resumo:
L’attività svolta durante il dottorato è stata incentrata su due tematiche riguardanti: (i) la modifica della composizione chimica delle classiche leghe di alluminio da fonderia per incrementarne la resistenza e stabilità termica; (ii) lo studio del comportamento a fatica di acciai innovativi alto-resistenziali, allo scopo di valutarne il loro utilizzo per la produzione di alberi motore e distribuzione in sostituzione dei tradizionali acciai utilizzati dopo bonifica e trattamento superficiale di nitrurazione. La messa a punto di una lega di alluminio da fonderia con elevata resistenza in temperatura ha richiesto, oltre all’individuazione della composizione chimica, l’ottimizzazione del trattamento termico e una completa caratterizzazione meccanica statica a fatica sia a temperatura ambiente sia a 200°C. L’attività ha permesso di sviluppare una lega, ottenuta aggiungendo 1,3% in peso di rame alla classica lega A357 (Al-Si-Mg), cha ha mostrato avere proprietà meccaniche superiori a quelle delle tradizionali leghe Al-Si-Mg-Cu quali la A354 e C355 sia a temperatura ambiente che a 200 °C dopo lunga esposizione in temperatura. Per quanto riguarda gli acciai innovativi, dopo una preliminare analisi di mercato per individuare quali acciai potessero essere oggetto di studio, è stato valutato come migliorarne le prestazioni a fatica, anche in presenza d’intaglio, attraverso la scelta del trattamento termico più opportuno e del processo di pallinatura. I risultati delle caratterizzazioni microstrutturale e meccanica svolte hanno permesso di individuare due acciai (nomi commerciali K890 e ASP2017) ottenuti per metallurgia delle polveri, ad oggi utilizzati solo per la produzione di stampi e/o utensili, in grado di sostituire gli acciai con cui vengono oggi realizzati i componenti, senza la necessità di eseguire il trattamento di nitrurazione
Resumo:
Laser Powder Bed Fusion (LPBF) permits the manufacturing of parts with optimized geometry, enabling lightweight design of mechanical components in aerospace and automotive and the production of tools with conformal cooling channels. In order to produce parts with high strength-to-weight ratio, high-strength steels are required. To date, the most diffused high-strength steels for LPBF are hot-work tool steels, maraging and precipitation-hardening stainless steels, featuring different composition, feasibility and properties. Moreover, LPBF parts usually require a proper heat treatment and surface finishing, to develop the desired properties and reduce the high roughness resulting from LPBF. The present PhD thesis investigates the effect of different heat treatments and surface finishing on the microstructure and mechanical properties of a hot-work tool steel and a precipitation-hardening stainless steel manufactured via LPBF. The bibliographic section focuses on the main aspects of LPBF, hot-work tool steels and precipitation-hardening stainless steels. The experimental section is divided in two parts. Part A addresses the effect of different heat treatments and surface finishing on the microstructure, hardness, tensile and fatigue behaviour of a LPBF manufactured hot-work tool steel, to evaluate its feasibility for automotive and racing components. Results indicated the possibility to achieve high hardness and strength, comparable to the conventionally produced steel, but a great sensitivity of fatigue strength on defects and surface roughness resulting from LPBF. Part B investigates the effect of different heat treatments on the microstructure, hardness, tensile and notch-impact behaviour of a LPBF produced precipitation-hardening stainless steel, to assess its feasibility for tooling applications. Results indicated the possibility to achieve high hardness and strength also through a simple Direct Aging, enabling heat treatment simplification by exploiting the microstructural features resulting from LPBF.
Resumo:
This thesis explores the advancement of cancer treatment through targeted photodynamic therapy (PDT) using bioengineered phages. It aims to harness the specificity of phages for targeting cancer-related receptors such as EGFR and HER2, which are pivotal in numerous malignancies and associated with poor outcomes. The study commenced with the M13EGFR phage, modified to target EGFR through pIII-displayed EGFR-binding peptides, demonstrating enhanced killing efficiency when conjugated with the Rose Bengal photosensitizer. This phase underscored phages' potential in targeted PDT. A breakthrough was achieved with the development of the M137D12 phage, engineered to display the 7D12 nanobody for precise EGFR targeting, marking a shift from peptide-based to nanobody-based targeting and yielding better specificity and therapeutic results. The translational potential was highlighted through in vitro and in vivo assays employing therapeutic lasers, showing effective, specific cancer cell killing through a necrotic mechanism. Additionally, the research delved into the interaction between the M13CC phage and colon cancer models, demonstrating its ability to penetrate and disrupt cancer spheroids only upon irradiation, indicating a significant advancement in targeting cells within challenging tumor microenvironments. In summary, the thesis provides a thorough examination of the phage platform's efficacy and versatility for targeted PDT. The promising outcomes, especially with the M137D12 phage, and initial findings on a HER2-targeting phage (M13HER2), forecast a promising future for phage-mediated, targeted anticancer strategies employing photosensitizers in PDT.
Resumo:
The present work describes the different stages of design, implementation, and validation procedures for an interleaved DC-DC boost converter intended for the 2022 Futura, a fuel cell-powered racing catamaran developed by the UniBoAT team. The main goal of the entire design has been the significant reduction of the weight of the converter by removing heat sinks and reducing component size while increasing its efficiency by adopting high-end power switches and the interleaved architecture operated with a synchronous control strategy. The obtained converter has been integrated into the structure containing the fuel cell stack obtaining a fully integrated system. The realized device has been based on an interleaved architecture with six phases controlled digitally through the average current mode control. The design has been validated through simulations carried out using the software LT-Spice, whereas experimental validations have been performed by means of laboratory bench tests and on-field tests. Detailed thermal and efficiency analyses are provided with the bench tests under the two synchronous and non-synchronous operating modes and with the adoption of the phase shedding technique. The prototype implementation and its performance in real operating conditions are also discussed. Eventually, it is underlined as the designed converter can be used in other applications requiring a voltage-controlled boost converter.
Resumo:
La ricerca di un'ottima qualità costruttiva è diventata, per ogni fornitore o produttore legato all’ambito automotive/motoristico, l’aspetto principale nella produzione di un veicolo, soprattutto nel caso specifico di un motore: per garantire, dunque, una buona qualità generale lungo tutta la gamma di produzione, è necessario avere una buona “ripetibilità” di costruzione, ossia, è fondamentale poter assemblare un alto numero di motori che siano il più possibile identici tra loro; considerando tutte le variabili che intervengono lungo la catena di produzione, a partire dalla banale lavorazione meccanica delle parti, fino all’assemblaggio stesso del motore. E' facilmente intuibile, pertanto, come non sia così raro avere delle leggere imperfezioni tra motore e motore che possono poi andare ad impattare sulla vita e sulle performance stesse del mezzo. Questo discorso è ancora più valido se si parla dell’ambito racing, in cui la qualità costruttiva, e, quindi, le performance, giocano un ruolo fondamentale nella progettazione di un motore, nonostante il volume produttivo sia tutto sommato piccolo. L’obiettivo dell'elaborato è quello di creare un metodo di controllo e di confronto della qualità/precisione costruttiva, intesa sia come qualità di produzione delle parti che di assemblaggio del motore finito. A partire da una scansione laser tridimensionale, sotto forma di una nuvola di punti, si è creato un software di elaborazione dati che permettesse di arrivare a calcolare il rapporto di compressione reale del motore in analisi e la mappa di squish tramite la sovrapposizione virtuale delle due scansioni relative ai cilindri/pistoni del blocco motore e la testa del motore stesso.