933 resultados para Hagerstown Bank (Hagerstown, Md.)
Resumo:
PURPOSE OF REVIEW: Intensive care medicine consumes a high share of healthcare costs, and there is growing pressure to use the scarce resources efficiently. Accordingly, organizational issues and quality management have become an important focus of interest in recent years. Here, we will review current concepts of how outcome data can be used to identify areas requiring action. RECENT FINDINGS: Using recently established models of outcome assessment, wide variability between individual ICUs is found, both with respect to outcome and resource use. Such variability implies that there are large differences in patient care processes not only within the ICU but also in pre-ICU and post-ICU care. Indeed, measures to improve the patient process in the ICU (including care of the critically ill, patient safety, and management of the ICU) have been presented in a number of recently published papers. SUMMARY: Outcome assessment models provide an important framework for benchmarking. They may help the individual ICU to spot appropriate fields of action, plan and initiate quality improvement projects, and monitor the consequences of such activity.
Resumo:
PURPOSE OF REVIEW: To describe the effects of arginine vasopressin other than its vasoconstrictive and antidiuretic potential in vasodilatory shock. RECENT FINDINGS: Arginine vasopressin influences substrate metabolism by stimulation of hepatic glucose release, gluconeogenesis, ureogenesis and fatty acid esterification. Although arginine vasopressin is a secretagogue of different hormones, only prolactin increases during arginine vasopressin therapy. Plasmatic and cellular coagulation are affected by arginine vasopressin, resulting in thrombocyte aggregation. Therefore, platelet count typically decreases following arginine vasopressin infusion in critically ill patients. In addition, arginine vasopressin reduces bile flow and may increase bilirubin concentrations. Despite its potential to decrease serum sodium, no change in electrolytes was observed in critically ill patients receiving arginine vasopressin. Although arginine vasopressin is an endogenous antipyretic, body temperature is not decreased by central venous arginine vasopressin infusion. In addition, arginine vasopressin modulates immune function through V1 receptors. Compared with norepinephrine, arginine vasopressin may have protective effects on endothelial function. Net arginine vasopressin effects on gastrointestinal motility seem to be inhibitory and are dose dependent. SUMMARY: Except for its antidiuretic and vasoconstrictive actions, the effects of arginine vasopressin in patients with vasodilatory shock have so far only been partially examined. Potential influences of arginine vasopressin on metabolism and immune, liver and mitochondrial function remain to be assessed in future studies.
Resumo:
OBJECTIVE: To obtain precise information on the optimal time window for surgical antimicrobial prophylaxis. SUMMARY BACKGROUND DATA: Although perioperative antimicrobial prophylaxis is a well-established strategy for reducing the risk of surgical site infections (SSI), the optimal timing for this procedure has yet to be precisely determined. Under today's recommendations, antibiotics may be administered within the final 2 hours before skin incision, ideally as close to incision time as possible. METHODS: In this prospective observational cohort study at Basel University Hospital we analyzed the incidence of SSI by the timing of antimicrobial prophylaxis in a consecutive series of 3836 surgical procedures. Surgical wounds and resulting infections were assessed to Centers for Disease Control and Prevention standards. Antimicrobial prophylaxis consisted in single-shot administration of 1.5 g of cefuroxime (plus 500 mg of metronidazole in colorectal surgery). RESULTS: The overall SSI rate was 4.7% (180 of 3836). In 49% of all procedures antimicrobial prophylaxis was administered within the final half hour. Multivariable logistic regression analyses showed a significant increase in the odds of SSI when antimicrobial prophylaxis was administered less than 30 minutes (crude odds ratio = 2.01; adjusted odds ratio = 1.95; 95% confidence interval, 1.4-2.8; P < 0.001) and 120 to 60 minutes (crude odds ratio = 1.75; adjusted odds ratio = 1.74; 95% confidence interval, 1.0-2.9; P = 0.035) as compared with the reference interval of 59 to 30 minutes before incision. CONCLUSIONS: When cefuroxime is used as a prophylactic antibiotic, administration 59 to 30 minutes before incision is more effective than administration during the last half hour.
Resumo:
OBJECTIVE: The purpose of this article is to report our preliminary results regarding microsurgical repair of the sural nerve after nerve biopsy, in an attempt to reduce the well-described sensory morbidity and neuroma formation. METHODS: Three patients with a suspected diagnosis of peripheral neuropathy underwent sural nerve biopsies to establish definitive diagnoses. A 10-mm segment of the sural nerve was resected with local anesthesia. After harvesting of the specimen, the proximal and distal nerve stumps were carefully mobilized and united with epineural suture techniques, under a surgical microscope. Sensory evaluations (assessing the presence of hypesthesia/dysesthesia or pain) of the lateral aspect of the foot, in regions designated Areas 1, 2, and 3, were performed before and 6 and 12 months after the biopsies. A visual analog scale was used for pain estimation. RESULTS: The biopsy material was sufficient for histopathological examinations in all cases, leading to conclusive diagnoses (vasculitis in two cases and amyloidosis in one case). The early post-biopsy hypesthesia, which was present for 4 to 8 weeks, improved to preoperative levels as early as 6 months after the nerve repair. Sensory evaluations performed at 6- and 12-month follow-up times demonstrated that none of the patients complained of pain at the biopsy site or distally in the area innervated by the sural nerve. Ultrasonography performed at the 12-month follow-up examination revealed normal sural nerve morphological features, with no neuroma formation, comparable to findings for the contralateral site. CONCLUSION: Microsurgical repair of the sural nerve after biopsy can eliminate or reduce sensory disturbances such as paraesthesia, hypesthesia, and dysesthesia distal to the biopsy site, in the distribution of the sensory innervation of the sural nerve, and can prevent painful neuroma formation. To our knowledge, this article is the first in the literature to report on microsurgical repair of the sural nerve after nerve biopsy. Decreased side effects suggest that this technique can become a standard procedure after sural nerve biopsy, which is commonly required to establish the diagnosis of various diseases, such as peripheral nerve pathological conditions, vasculitis, and amyloidosis. More cases should be analyzed, however, to explore the usefulness of the technique and the reliability of sural nerve biopsy samples in attempts to obtain conclusive diagnoses.
Resumo:
Although rarely used, the abductor hallucis muscle has its indications in coverage of small defects at the medial aspect of the hindfoot as a proximally based muscle flap. The authors describe a 69-year-old female patient in whom the abductor hallucis muscle was used as a distally based flap to reconstruct a defect in the forefoot. An anatomic study was undertaken on two cadaveric feet to explore the practicality of the distally based abductor hallucis muscle flap before it was applied clinically. The distally based abductor muscle flap receives its blood supply from minor and major pedicles in a retrograde fashion from both the dorsal arterial network and the deep plantar system, through communicating branches with the medial plantar artery distally. Transposition of the distally based hallucis flap is only advisable in individuals who have no vascular compromise in the lower leg and foot. To the authors' knowledge, this modification has not yet been described in the available literature.
Resumo:
To investigate the appearance of geographic atrophy in high-resolution optical coherence tomography (OCT) images, the fundus autofluorescence (FAF) pattern, and infrared images simultaneously recorded with a novel combined OCT-scanning laser ophthalmology (SLO) system.
Resumo:
PURPOSE: To compare the performance of dynamic contour tonometry (DCT) and Goldmann applanation tonometry (GAT) in measuring intraocular pressure in eyes with irregular corneas. METHODS: GAT and DCT measures were taken in 30 keratoconus and 29 postkeratoplasty eyes of 35 patients after pachymetry and corneal topography. Regression and correlation analyses were performed between both tonometry methods and between tonometry methods and corneal parameters. Bland-Altman plots were constructed. RESULTS: DCT values were significantly higher than GAT values in both study groups: +4.1 +/- 2.3 mm Hg (mean +/- SD) in keratoconus and +3.1 +/- 2.5 mm Hg after keratoplasty. In contrast to DCT, GAT values were significantly higher in postkeratoplasty eyes than in keratoconus. The correlation between the 2 tonometry methods was moderate in keratoconus (Kendall correlation coefficient, tau = 0.34) as well in postkeratoplasty eyes (tau = 0.66). The +/-1.96 SD span of the DCT-GAT differences showed a considerable range: -0.42 to +8.70 mm Hg in keratoconus and -1.87 to +7.98 mm Hg in postkeratoplasty eyes. In the keratoconus group, neither DCT nor GAT correlated significantly with any of the corneal parameters. In the postkeratoplasty group, both DCT and GAT measures showed a moderate positive correlation with corneal steepness, but only DCT had a significant negative correlation with the central corneal thickness (tau = -0.33). CONCLUSIONS: DCT measured significantly higher intraocular pressures than GAT in keratoconus and postkeratoplasty eyes. DCT and GAT measures varied considerably, and DCT was not less dependent on biomechanical properties of irregular corneas than GAT.
Resumo:
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2 catalyze the interconversion of inactive and active glucocorticoids. Impaired regulation of these enzymes has been associated with obesity, diabetes, hypertension, and cardiovascular disease. Previous studies in animals and humans suggested that dehydroepiandrosterone (DHEA) has antiglucocorticoid effects, but the underlying mechanisms are unknown. In this study, DHEA treatment markedly increased mRNA expression and activity of 11beta-HSD2 in a rat cortical collecting duct cell line and in kidneys of C57BL/6J mice and Sprague-Dawley rats. DHEA-treated rats tended to have reduced urinary corticosterone to 11-dehydrocorticosterone ratios. It was found that CCAAT/enhancer-binding protein-alpha (C/EBP-alpha) and C/EBP-beta regulated HSD11B2 transcription and that DHEA likely modulated the transcription of 11beta-HSD2 in a phosphatidylinositol-3 kinase/Akt-dependent manner by increasing C/EBP-beta mRNA and protein expression. Moreover, it is shown that C/EBP-alpha and C/EBP-beta differentially regulate the expression of 11beta-HSD1 and 11beta-HSD2. In conclusion, DHEA induces a shift from 11beta-HSD1 to 11beta-HSD2 expression, increasing conversion from active to inactive glucocorticoids. This provides a possible explanation for the antiglucocorticoid effects of DHEA.
Resumo:
Cation/proton exchange has been recognized for decades in mammalian mitochondria, but the exchanger proteins have eluded identification. In this study, a cDNA from a human brain library, previously designated NHA2 in the genome, was cloned and characterized. The NHA2 transcript bears more similarity to prokaryotic than known eukaryotic sodium/proton exchangers, but it was found to be expressed in multiple mammalian organs and cultured cells. A mAb to NHA2 was generated and found to label an approximately 55-kD native protein in multiple tissues and cell lines. The specificity of this antibody was confirmed by demonstrating the loss of the native NHA2 band on immunoblots when cultured cells were treated with NHA2-specific small interfering RNA. Although NHA2 protein was detected in multiple organs, within each, its expression was restricted to specific cell types. In the kidney, co-localization with calbindin 28k and reverse transcription-PCR of microdissected tubules revealed that NHA2 is limited to the distal convoluted tubule. In cell lines, native NHA2 was localized both to the plasma membrane and to the intracellular compartment; immunogold electron microscopy of rat distal convoluted tubule demonstrated NHA2 predominantly but not exclusively on the inner mitochondrial membrane. Furthermore, co-sedimentation of NHA2 antigen and mitochondrial membranes was observed with differential centrifugation, and two mitochondrial markers co-localized with NHA2 in cultured cells. Regarding function, human NHA2 reversed the sodium/hydrogen exchanger-null phenotype when expressed in sodium/hydrogen exchanger-deficient yeast and restored the ability to defend high salinity in the presence of acidic extracellular pH. In summary, NHA2 is a ubiquitous mammalian sodium proton/exchanger that is restricted to the distal convoluted tubule in the kidney.
Resumo:
PURPOSE: To test the hypothesis that hyporeflective spaces in the neuroretina found on optical coherence tomography (OCT) examination have different optical reflectivities according to whether they are associated with exudation or degeneration. METHODS: Retrospective analysis of eyes with idiopathic perifoveal telangiectasia (IPT), diabetic macular edema (DME), idiopathic central serous chorioretinopathy (CSC), retinitis pigmentosa (RP), or cone dystrophy (CD) and eyes of healthy control subjects. OCT scans were performed. Raw scan data were exported and used to calculate light reflectivity profiles. Reflectivity data were acquired by projecting three rectangular boxes, each 50 pixels long and 5 pixels wide, into the intraretinal cystoid spaces, centrally onto unaffected peripheral RPE, and onto the prefoveolar vitreous. Light reflectivity in the retinal pigment epithelium (RPE), vitreous, and intraretinal spaces for the different retinal conditions and control subjects were compared. RESULTS: Reflectivities of the vitreous and the RPE were similar among the groups. Hyporeflective spaces in eyes with exudation (DME, RP, and CSC) had higher reflectivity compared with the mean reflectivity of the vitreous, whereas the cystoid spaces in the maculae of the eyes without exudation (CD and IPT) had a lower reflectivity than did the normal vitreous. CONCLUSIONS: Analysis of the light reflectivity profiles may be a tool to determine whether the density of hyporeflective spaces in the macula is greater or less than that of the vitreous, and may be a way to differentiate degenerative from exudative macular disease.
Resumo:
Immune cells enter the central nervous system (CNS) from the circulation under normal conditions for immunosurveillance and in inflammatory neurologic diseases. This review describes the distinct anatomic features of the CNS vasculature that permit it to maintain parenchymal homeostasis and which necessitate specific mechanisms for neuroinflammation to occur. We review the historical evolution of the concept of the blood-brain barrier and discuss distinctions between diffusion/transport of solutes and migration of cells from the blood to CNS parenchyma. The former is regulated at the level of capillaries, whereas the latter takes place in postcapillary venules. We summarize evidence that entry of immune cells into the CNS parenchyma in inflammatory conditions involves 2 differently regulated steps: transmigration of the vascular wall into the perivascular space and progression across the glia limitans into the parenchyma.
Resumo:
To analyze the impact of opacities in the optical pathway and image compression of 32-bit raw data to 8-bit jpg images on quantified optical coherence tomography (OCT) image analysis.
Resumo:
STUDY DESIGN: This is an experimental study on an artificial vertebra model and human cadaveric spine. OBJECTIVE: Characterization of polymethylmethacrylate (PMMA) bone cement distribution in the vertebral body as a function of cement viscosity, bone porosity, and injection speed. Identification of relevant parameters for improved cement flow predictability and leak prevention in vertebroplasty. SUMMARY OF BACKGROUND DATA: Vertebroplasty is an efficient procedure to treat vertebral fractures and stabilize osteoporotic bone in the spine. Severe complications result from bone cement leakage into the spinal canal or the vascular system. Cement viscosity has been identified as an important parameter for leak prevention but the influence of bone structure and injection speed remain obscure. METHODS: An artificial vertebra model based on open porous aluminum foam was used to simulate bone of known porosity. Fifty-six vertebroplasties with 4 different starting viscosity levels and 2 different injection speeds were performed on artificial vertebrae of 3 different porosities. A validation on a human cadaveric spine was executed. The experiments were radiographically monitored and the shape of the cement clouds quantitatively described with the 2 indicators circularity and mean cement spreading distance. RESULTS: An increase in circularity and a decrease in mean cement spreading distance was observed with increasing viscosity, with the most striking change occurring between 50 and 100 Pas. Larger pores resulted in significantly reduced circularity and increased mean cement spreading distance whereas the effect of injection speed on the 2 indicators was not significant. CONCLUSION: Viscosity is the key factor for reducing the risk of PMMA cement leakage and it should be adapted to the degree of osteoporosis encountered in each patient. It may be advisable to opt for a higher starting viscosity but to inject the material at a faster rate.