470 resultados para HPMC gum
Resumo:
Loose-leaf.
Resumo:
Originally for orchestra, piano and Deagan percussion instruments.
Pete Appleton (Jablonowski) UM Baseball, 1924-1926, major league card, with New York Yankees in 1933
Resumo:
[Big League Chewing Gum baseball card]
Resumo:
Two forms of small-scale forestry are developing in Australia, each with different impacts on rural communities. One is based on growing short-rotation Eucalyptus globulus (blue gum) for pulp and the other on production of higher-value products from longer-rotation native hard-woods. Several impediments exist to further development of small-scale forestry, including the lack of a small-scale forestry culture, concerns over harvest rights, lack of market development, the long wait for returns, and satisfaction with current land uses. Nevertheless, the rapid increase in farm woodlot establishment in the past five years has paralleled the strong increase in the private industrial plantation estate. As markets develop and hindrances are overcome, landholders not previously interested in small-scale forestry may consider ita worthwhile land use.
Resumo:
A mini-Tn10:lacZ: kan was inserted into a wild-type strain of Acetobacter xylinus by random transposon mutagenesis, generating a lactose-utilising and cellulose-producing mutant strain designated ITz3. Antibiotic selection plate assays and Southern hybridisation revealed that the lacZ gene was inserted once into the chromosome of strain ITz3 and was stably maintained in non-selective medium after more than 60 generations. The modified strain had, on the average, a 28-fold increase in cellulose production and a 160-fold increase in beta-galactosidase activity when grown in lactose medium. beta-Galactosidase activity is present in either lactose or sucrose medium indicating that the gene is constitutively expressed. Cellulose and beta-galactosidase production by the modified strain was also evaluated in pure and enriched whey substrates. Utilisation of lactose in whey substrate by ITz3 reached 17 g l(-1) after 4 days incubation. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Orally disintegrating Tablets (ODTs), also known as fast-disintegrating, fast-melt or fast-dissolving tablets, are a relatively novel dosage technology that involves the rapid disintegration or dissolution of the dosage form into a solution or suspension in the mouth without the need for water. The solution containing the active ingredients is swallowed, and the active ingredients are then absorbed through the gastrointestinal epithelium to reach the target and produce the desired effect. Formulation of ODTs was originally developed to address swallowing difficulties of conventional solid oral dosage forms (tablets and capsules) experienced by wide range of patient population, especially children and elderly. The current work investigates the formulation and development of ODTs prepared by freeze drying. Initial studies focused on formulation parameters that influence the manufacturing process and performance of lyophilised tablets based on excipients used in commercial products (gelatin and saccharides). The second phase of the work was followed up by comprehensive studies to address the essential need to create saccharide free ODTs using naturally accruing amino acids individually or in combinations. Furthermore, a factorial design study was carried out to investigate the feasibility of delivering multiparticulate systems of challenging drugs using a novel formulation that exploited the electrostatic associative interaction between gelatin and carrageenan. Finally, studies aimed to replace gelatin with ethically and morally accepted components to the end users were performed and the selected binder was used in factorial design studies to investigate and optimise ODT formulations that incorporated drugs with varies physicochemical properties. Our results show that formulation of elegant lyophilised ODTs with instant disintegration and adequate mechanical strength requires carful optimisation of gelatin concentration and bloom strength in addition to saccharide type and concentration. Successful formulation of saccharides free lyophilised ODTs requires amino acids that crystallise in the frozen state or display relatively high Tg', interact and integrate completely with the binder and, also, display short wetting time with the disintegrating medium. The use of an optimised mixture of gelatin, carrageenan and alanine was able to create viscous solutions to suspend multiparticulate systems and at the same time provide tablets with short disintegration times and adequate mechanical properties. On the other hand, gum arabic showed an outstanding potential for use as a binder in the formulation of lyophilised ODTs. Compared to gelatin formulations, the use of gum arabic simplified the formulation stages, shortened the freeze drying cycles and produced tablets with superior performance in terms of the disintegration time and mechanical strength. Furthermore, formulation of lyophilised ODTs based on gum arabic showed capability to deliver diverse range of drugs with advantages over commercial products.
Resumo:
The literature relating to the principles and practice of drying of materials, particularly those susceptible to thermal degradation or undesirable loss of volatile components, has been reviewed. Single droplets of heat-sensitive materials were dried whilst suspended in a horizontal wind tunnel from a specially-designed, rotating thermocouple which enabled direct observation of drying behaviour and continuous measurement of droplet temperature as drying progressed. The effects of drying air temperature and initial solids concentration on the potency of various antibiotics, viz. ampicillin, chloramphenicol, oxytetracycline, streptomycin and tetracycline, were assessed using a modified Drug Sensitivity Testing technique. Only ampicillin was heat-sensitive at temperatures above 100°C, e.g. at an air temperature of 115°C its zone diameter was reduced from 100% to 45%. Selected enzymes, viz. dextran sucrase and invertase, were also dried and their residual activities determined by High Performance Liquid Chromatography. The residual activity of dextran sucrase was rapidly reduced at temperatures above 65°C, and the residual activity of invertase reduced rapidly at temperatures above 65°C; but drying with short residence times will retain most of its activity. The performance of various skin-forming encapsulants, viz. rice and wheat starch, dextrin, coffee, skim milk, fructose, gelatine 60 and 150 Bloom, and gum arabic, was evaluated to determine their capabilities for retention of ethanol as a model volatile, under different operating conditions. The effects of initial solids concentration, air velocity and temperature were monitored for each material tested. Ethanol content was analysed by Gas Liquid Chromatography and in some cases dried crusts were removed for examination. Volatiles retention was concluded to depend in all cases upon the rate and nature of the skin formation and selective diffusion phenomena. The results provided further insight into the inter-relationship between temperature, residence time and thermal degradation of heat-sensitive materials. They should also assist in selection of the preferred dryer for such materials, and of the operating parameter to enable maximum retention of the required physico-chemical characteristics in the dried materials.
Resumo:
Contrary to previously held beliefs, it is now known that bacteria exist not only on the surface of the skin but they are also distributed at varying depths beneath the skin surface. Hence, in order to sterilise the skin, antimicrobial agents are required to penetrate across the skin and eliminate the bacteria residing at all depths. Chlorhexidine is an antimicrobial agent with the widest use for skin sterilisation. However, due to its poor permeation rate across the skin, sterilisation of the skin cannot be achieved and, therefore, the remaining bacteria can act as a source of infection during an operation or insertion of catheters. The underlying theme of this study is to enhance the permeation of this antimicrobial agent in the skin by employing chemical (enhancers and supersaturated systems) or physical (iontophoresis) techniques. The hydrochloride salt of chlorhexidine (CHX), a poorly soluble salt, was used throughout this study. The effect of ionisation on in vitro permeation rate across the excised human epidennis was investigated using Franz-type diffusion cells. Saturated solutions of CHX were used as donor and the variable studied was vehicle pH. Permeation rate was increased with increasing vehicle pH. The pH effect was not related to the level of ionisation of the drug. The effect of donor vehicle was also studied using saturated solutions of CHX in 10% and 20% ethanol as the donor solutions. Permeation of CHX was enhanced by increasing the concentration of ethanol which could be due to the higher concentration of CHX in the donor phase and the effect of ethanol itself on the membrane. The interplay between drug diffusion and enhancer pretreatment of the epidennis was studied. Pretreatment of the membrane with 10% Azone/PG demonstrated the highest diffusion rate followed by 10% olcic acid/PG pretreatment compared to other pretreatment regimens (ethanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium bromide (DT AB). Differential Scanning Calorimetry (DSC) was also employed to study the mode of action of these enhancers. The potential of supersaturated solutions in enhancing percutaneous absorption of CHX was investigated. Various anti-nucleating polymers were screened in order to establish the most effective agent. Polyvinylpyrrolidone (PVP, K30) was found to be a better candidate than its lower molecular weight counterpart (K25) and hydroxypropyl methyleellulose (HPMC). The permeation studies showed an increase in diffusion rate by increasing the degree of saturation. Iontophoresis is a physical means of transdemal drug delivery enhancement that causes an increased penetration of molecules into or through the skin by the application of an electric field. This technique was employed in conjunction with chemical enhancers to assess the effect on CHX permeation across the human epidermis. An improved transport of CHX, which was pH dependant was observed upon application of the current. Combined use of iontophoresis and chemical enhancers further increased the CHX transport indicating a synergistic effect. Pretreatment of the membrane with 10% Azone/PG demonstrated the greatest effect.
Resumo:
Objectives. Standard pharmaceutical capsules are designed to dissolve in the acidic environment of the stomach releasing the encapsulated contents for absorption. When release is required further along the gastrointestinal tract capsules can be coated with acid insoluble polymers to enable passage through the stomach and dissolution in the intestine. This paper describes formulations that have the potential to be used to produce two-piece hard capsules for post-gastric delivery without the requirement of an exterior coat. Methods. The formulation uses three polysaccharides: sodium alginate, hypromellose and gellan gum to provide acid insolubility and the ability to form capsules using standard industrial equipment. Key findings. The rheological profile, on cooling, of the base material, water content and thickness of the films were shown to be comparable with those of commercial capsules. The capsules remained intact for 2 h in 100 mm HCl at pH 1.2, and within 5 min of being removed from the acid and submerged in phosphate-buffered saline at pH 6.8 were ruptured. Conclusions. Selected formulations from this study have potential for use as delayed release capsules.
Resumo:
Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.
Resumo:
Localised, targeted drug delivery to the oesophagus offers the potential for more effective delivery and reduced drug dosages, coupled with increased patient compliance. This thesis considers bioadhesive liquids, orally retained tablets and films as well as chewable dosage forms as drug delivery systems to target the oesophagus. Miconazole nitrate was used as a model antifungal agent. Chitosan and xanthan gum hydrogels were evaluated as viscous polymer viables with the in vitro retention, drug release and minimum inhibitory concentration values of the formulations measured. Xanthan showed prolonged retention on the oesophageal surface in vitro yet chitosan reduced the MIC value; both polymers offer potential for local targeting to the oesophagus. Cellulose derivatives were investigated within orally retained dosage forms. Both drug and polymer dissolution rates were measured to investigate the drug release mechanism and to develop a formulation with concomitant drug and polymer release to target the oesophagus with solubilised drug within a viscous media. Several in vitro dissolution methods were evaluated to measure drug release from chewable dosage forms with both drug and polymer dissolution quantified to investigate the effects of dissolution apparatus on drug release. The results from this thesis show that a range of drug delivery strategies that can be used to target drug to the oesophagus. The composition of these formulations as well as the methodology used within the development are crucial to best understand the formulation and predict its performance in vivo.
Resumo:
Objectives: Are behavioural interventions effective in reducing the rate of sexually transmitted infections (STIs) among genitourinary medicine (GUM) clinic patients? Design: Systematic review and meta-analysis of published articles. Data sources: Medline, CINAHL, Embase, PsychINFO, Applied Social Sciences Index and Abstracts, Cochrane Library Controlled Clinical Trials Register, National Research Register (1966 to January 2004). Review methods: Randomised controlled trials of behavioural interventions in sexual health clinic patients were included if they reported change to STI rates or self reported sexual behaviour. Trial quality was assessed using the Jadad score and results pooled using random effects meta-analyses where outcomes were consistent across studies. Results: 14 trials were included; 12 based in the United States. Experimental interventions were heterogeneous and most control interventions were more structured than typical UK care. Eight trials reported data on laboratory confirmed infections, of which four observed a greater reduction in their intervention groups (in two cases this result was statistically significant, p<0.05). Seven trials reported consistent condom use, of which six observed a greater increase among their intervention subjects. Results for other measures of sexual behaviour were inconsistent. Success in reducing STIs was related to trial quality, use of social cognition models, and formative research in the target population. However, effectiveness was not related to intervention format or length. Conclusions: While results were heterogeneous, several trials observed reductions in STI rates. The most effective interventions were developed through extensive formative research. These findings should encourage further research in the United Kingdom where new approaches to preventing STIs are urgently required.
Resumo:
ODTs have emerged as a novel oral dosage form with a potential to deliver a wide range of drug candidates to paediatric and geriatric patients. Compression of excipients offers a costeffective and translatable methodology for the manufacture of ODTs. Though, technical challenges prevail such as difficulty to achieve suitable tablet mechanical strength while ensuring rapid disintegration in the mouth, poor compressibility of preferred ODT diluent Dmannitol, and limited use for modified drug-release. The work investigates excipients’ functionality in ODTs and proposes new methodologies for enhancing material characteristics via process and particle engineering. It also aims to expand ODT applications for modified drug-release. Preformulation and formulation studies employed a plethora of techniques/tests including AFM, SEM, DSC, XRD, TGA, HSM, FTIR, hardness, disintegration time, friability, stress/strain and Heckel analysis. Tableting of D-mannitol and cellulosic excipients utilised various compression forces, material concentrations and grades. Engineered D-mannitol particles were made by spray drying mannitol with pore former NH4HCO3. Coated microparticles of model API omeprazole were prepared using water-based film forming polymers. The results of nanoscopic investigations elucidated the compression profiles of ODT excipients. Strong densification of MCC (Py is 625 MPa) occurs due to conglomeration of physicomechanical factors whereas D-mannitol fragments under pressure leading to poor compacts. Addition of cellulosic excipients (L-HPC and HPMC) and granular mannitol to powder mannitol was required to mechanically strengthen the dosage form (hardness >60 N, friability <1%) and to maintain rapid disintegration (<30 sec). Similarly, functionality was integrated into D-mannitol by fabrication of porous, yet, resilient particles which resulted in upto 150% increase in the hardness of compacts. The formulated particles provided resistance to fracture under pressure due to inherent elasticity while promoted tablet disintegration (50-77% reduction in disintegration time) due to porous nature. Additionally, coated microparticles provided an ODT-appropriate modified-release coating strategy by preventing drug (omeprazole) release.
Resumo:
This paper presents MRI measurements of a novel semi solid MR contrast agent to pressure. The agent is comprised of potassium chloride cross linked carageenan gum at a concentration of 2% w/v, with micron size lipid coated bubbles of air at a concentration of 3% v/v. The choice for an optimum suspending medium, the methods of production and the preliminary MRI results are presented herein. The carageenan gum is shown to be ideally elastic for compressions relating to volume changes less than 15%, in contrast to the inelastic gellan gum also tested. Although slightly lower than that of gellan gum, carageenan has a water diffusion coefficient of 1.72×10-9 m2.s-1 indicating its suitability to this purpose. RARE imaging is performed whilst simultaneously compressing test and control samples and a maximum sensitivity of 1.6% MR signal change per % volume change is found which is shown to be independent of proton density variations due to the presence of microbubbles and compression. This contrast agent could prove useful for numerous applications, and particularly in chemical engineering. More generally the method allows the user to non-invasively image with MRI any process that causes, within the solid, local changes either in bubble size or bubble shape. © 2008 American Institute of Physics.
Resumo:
Ramipril is used mainly for the treatment of hypertension and to reduce incidence of fatality following heart attacks in patients who develop indications of congestive heart failure. In the paediatric population it is used most commonly for the treatment of heart failure, hypertension in type 1 diabetes and diabetic nephropathy. Due to the lack of a suitable liquid formulation, the current study evaluates the development of a range of oral liquid formulations of ramipril along with their in vitro and in vivo absorption studies. Three different formulation development approaches were studied: solubilisation using acetic acid as a co-solvent, complexation with hydroxypropyl-β-cyclodextrin (HP-β-CD) and suspension development using xanthan gum. Systematic optimisation of formulation parameters for the different strategies resulted in the development of products stable for twelve months at long term stability conditions. In vivo evaluation showed CMAX of 10.48 µg/mL for co-solvent, 13.04µg/ml for the suspension and 29.58µg/mL for the cyclodextrin based ramipril solution. Interestingly, both ramipril solution (co-solvent) and the suspension showed a TMAX of 2.5h, however, cyclodextrin based ramipril produced TMAX at 0.75h following administration. The results presented in this study provide translatable products for oral liquid ramipril which offer preferential paediatric use over existing alternatives.