952 resultados para HEAT-FLUX


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a methodology for measuring thermal properties in situ, with a special focus on obtaining properties of layered stack-ups commonly used in armored vehicle components. The technique involves attaching a thermal source to the surface of a component, measuring the heat flux transferred between the source and the component, and measuring the surface temperature response. The material properties of the component can subsequently be determined from measurement of the transient heat flux and temperature response at the surface alone. Experiments involving multilayered specimens show that the surface temperature response to a sinusoidal heat flux forcing function is also sinusoidal. A frequency domain analysis shows that sinusoidal thermal excitation produces a gain and phase shift behavior typical of linear systems. Additionally, this analysis shows that the material properties of sub-surface layers affect the frequency response function at the surface of a particular stack-up. The methodology involves coupling a thermal simulation tool with an optimization algorithm to determine the material properties from temperature and heat flux measurement data. Use of a sinusoidal forcing function not only provides a mechanism to perform the frequency domain analysis described above, but sinusoids also have the practical benefit of reducing the need for instrumentation of the backside of the component. Heat losses can be minimized by alternately injecting and extracting heat on the front surface, as long as sufficiently high frequencies are used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inception of the Little Ice Age (~1400–1700 AD) is believed to have been driven by an interplay of external forcing and climate system internal variability. While the hemispheric signal seems to have been dominated by solar irradiance and volcanic eruptions, the understanding of mechanisms shaping the climate on a continental scale is less robust. In an ensemble of transient model simulations and a new type of sensitivity experiments with artificial sea ice growth, the authors identify a sea ice–ocean–atmosphere feedback mechanism that amplifies the Little Ice Age cooling in the North Atlantic–European region and produces the temperature pattern suggested by paleoclimatic reconstructions. Initiated by increasing negative forcing, the Arctic sea ice substantially expands at the beginning of the Little Ice Age. The excess of sea ice is exported to the subpolar North Atlantic, where it melts, thereby weakening convection of the ocean. Consequently, northward ocean heat transport is reduced, reinforcing the expansion of the sea ice and the cooling of the Northern Hemisphere. In the Nordic Seas, sea surface height anomalies cause the oceanic recirculation to strengthen at the expense of the warm Barents Sea inflow, thereby further reinforcing sea ice growth. The absent ocean–atmosphere heat flux in the Barents Sea results in an amplified cooling over Northern Europe. The positive nature of this feedback mechanism enables sea ice to remain in an expanded state for decades up to a century, favoring sustained cold periods over Europe such as the Little Ice Age. Support for the feedback mechanism comes from recent proxy reconstructions around the Nordic Seas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this progression. Here we tackle the question of where such ice may still be found in the Antarctic ice sheet. We can show that such old ice is most likely to exist in the plateau area of the East Antarctic ice sheet (EAIS) without stratigraphic disturbance and should be able to be recovered after careful pre-site selection studies. Based on a simple ice and heat flow model and glaciological observations, we conclude that positions in the vicinity of major domes and saddle position on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, we strongly suggest significantly reduced ice thickness to avoid bottom melting. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 Myr old ice (i.e., more than 700 m less than at the current EPICA Dome C drill site). Within this constraint, the resolution of an Oldest-Ice record and the distance of such old ice to the bedrock should be maximized to avoid ice flow disturbances, for example, by finding locations with minimum geothermal heat flux. As the geothermal heat flux is largely unknown for the EAIS, this parameter has to be carefully determined beforehand. In addition, detailed bedrock topography and ice flow history has to be reconstructed for candidates of an Oldest-Ice ice coring site. Finally, we argue strongly for rapid access drilling before any full, deep ice coring activity commences to bring datable samples to the surface and to allow an age check of the oldest ice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the microscale heat transfer problem from heated lattice to the gas. A micro-device for enhanced heat transfer is presented and numerically investigated. Thermal creep induces 3-D vortex structures in the vicinity of the lattice. The gas flow is in the slip flow regime (Knudsen number Kn⩽0.1Kn⩽0.1). The simulations are performed using slip flow Navier–Stokes equations with boundary condition formulations proposed by Maxwell and Smoluchowski. In this study the wire thicknesses and distances of the heated lattice are varied. The surface geometrical properties alter significantly heat flux through the surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ar-40/Ar-39 total gas and plateau dates from muscovite and biotite in the southern Black Hills, South Dakota, provide evidence for a period of Middle Proterozoic slow cooling. Early Proterozoic (1600-1650 Ma) mica dates were obtained from metasedimentary rocks located in a synformal structure between the Harney Peak and Bear Mountain domes and also south of Bear Mountain. Metamorphic rocks from the dome areas and undeformed samples of the similar to 1710 Ma Harney Peak Granite (HPG) yield Middle Proterozoic mica dates (similar to 1270-1500 Ma). Two samples collected between the synform and Bear Mountain dome yield intermediate total gas mica dates of similar to 1550 Ma. We suggest two end-member interpretations to explain the map pattern of cooling ages: (1) subhorizontal slow cooling of an area which exhibits variation in mica Ar retention intervals or (2) mild folding of a Middle Proterozoic (similar to 1500 Ma) similar to 300 degrees C isotherm. According to the second interpretation, the preservation of older dates between the domes may reflect reactivation of a preexisting synformal structure (and downwarping of relatively cold rocks) during a period of approximately east-west contraction and slow uplift during the Middle Proterozoic. The mica data, together with hornblende data from the Black Hills published elsewhere, indicate that the ambient country-rock temperature at the 3-4 kbar depth of emplacement of the HPG was between 350 degrees C and 500 degrees C, suggesting that the average upper crustal geothermal gradient was 25 degrees-40 degrees C/km prior to intrusion. The thermochronologic data suggest HPG emplacement was followed by a similar to 200 m.y. period of stability and tectonic quiescence with little uplift. We propose that crust thickened during the Early Proterozoic was uplifted and erosionally(?) thinned prior to similar to 1710 Ma and that the HPG magma was emplaced into isostatically stable crust of relatively normal thickness. We speculate that uplift and crustal thinning prior to HPG intrusion was the result of differential thinning of the subcrustal lithosphere beneath the Black Hills. If so, this process would have also caused an increase in mantle heat flux across the Moho and triggered vapor-absent melting of biotite to produce the HPG magma. This scenario for posttectonic granite generation is supported, in part, by the fact that in the whole of the Black Hills, the HPG is spatially associated with the deepest exposed Early Proterozoic country rock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A three-dimensional, regional coupled atmosphere-ocean model with full physics is developed to study air-sea interactions during winter storms off the U. S. east coast. Because of the scarcity of open ocean observations, models such as this offer valuable opportunities to investigate how oceanic forcing drives atmospheric circulation and vice versa. The study presented here considers conditions of strong atmospheric forcing (high wind speeds) and strong oceanic forcing (significant sea surface temperature (SST) gradients). A simulated atmospheric cyclone evolves in a manner consistent with Eta reanalysis, and the simulated air-sea heat and momentum exchanges strongly affect the circulations in both the atmosphere and the ocean. For the simulated cyclone of 19-20 January 1998, maximum ocean-to-atmosphere heat fluxes first appear over the Gulf Stream in the South Atlantic Bight, and this results in rapid deepening of the cyclone off the Carolina coast. As the cyclone moves eastward, the heat flux maximum shifts into the region near Cape Hatteras and later northeast of Hatteras, where it enhances the wind locally. The oceanic response to the atmospheric forcing is closely related to the wind direction. Southerly and southwesterly winds tend to strengthen surface currents in the Gulf Stream, whereas northeasterly winds weaken the surface currents in the Gulf Stream and generate southwestward flows on the shelf. The oceanic feedback to the atmosphere moderates the cyclone strength. Compared with a simulation in which the oceanic model always passes the initial SST to the atmospheric model, the coupled simulation in which the oceanic model passes the evolving SST to the atmospheric model produces higher ocean-to-atmosphere heat flux near Gulf Stream meander troughs. This is due to wind-driven lateral shifts of the stream, which in turn enhance the local northeasterly winds. Away from the Gulf Stream the coupled simulation produces surface winds that are 5 similar to 10% weaker. Differences in the surface ocean currents between these two experiments are significant on the shelf and in the open ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation in the Gulf of Maine and its seasonal transition in response to wind, surface heat flux, river discharge, and the M-2 tide. The model has an orthogonal-curvature linear grid in the horizontal with variable spacing from 3 km nearshore to 7 km offshore and 19 levels in the vertical. It is initialized and forced at the open boundary with model results from the East Coast Forecast System. The first experiment is forced by monthly climatological wind and heat flux from the Comprehensive Ocean Atmosphere Data Set; discharges from the Saint John, Penobscot, Kennebec, and Merrimack Rivers are added in the second experiment; the semidiurnal lunar tide (M-2) is included as part of the open boundary forcing in the third experiment. It is found that the surface heat flux plays an important role in regulating the annual cycle of the circulation in the Gulf of Maine. The spinup of the cyclonic circulation between April and June is likely caused by the differential heating between the interior gulf and the exterior shelf/slope region. From June to December the cyclonic circulation continues to strengthen, but gradually shrinks in size. When winter cooling erodes the stratification, the cyclonic circulation penetrates deeper into the water column. The circulation quickly spins down from December to February as most of the energy is consumed by bottom friction. While inclusion of river discharge changes details of the circulation pattern, the annual evolution of the circulation is largely unaffected. On the other hand, inclusion of the tide results in not only the anticyclonic circulation on Georges Bank but also modifications to the seasonal circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation features in the Pearl River Estuary and their responses to tide, river discharge, wind, and heat flux in the winter dry and summer wet seasons. The model has an orthogonal curvilinear grid in the horizontal plane with variable spacing from 0.5 km in the estuary to 1 km on the shelf and 15 sigma levels in the vertical direction. The initial conditions and the subtidal open boundary forcing are obtained from an associated larger-scale model of the northern South China Sea. Buoyancy forcing uses the climatological monthly heat fluxes and river discharges, and both the climatological monthly wind and the realistic wind are used in the sensitivity experiments. The tidal forcing is represented by sinusoidal functions with the observed amplitudes and phases. In this paper, the simulated tide is first examined. The simulated seasonal distributions of the salinity, as well as the temporal variations of the salinity and velocity over a tidal cycle are described and then compared with the in situ survey data from July 1999 and January 2000. The model successfully reproduces the main hydrodynamic processes, such as the stratification, mixing, frontal dynamics, summer upwelling, two-layer gravitational circulation, etc., and the distributions of hydrodynamic parameters in the Pearl River Estuary and coastal waters for both the winter and the summer season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of a reduced Greenland Ice Sheet (GrIS) on Greenland's surface climate during the Eemian interglacial is studied using a set of simulations with different GrIS realizations performed with a comprehensive climate model. We find a distinct impact of changes in the GrIS topography on Greenland's surface air temperatures (SAT) even when correcting for changes in surface elevation, which influences SAT through the lapse rate effect. The resulting lapse-rate-corrected SAT anomalies are thermodynamically driven by changes in the local surface energy balance rather than dynamically caused through anomalous advection of warm/cold air masses. The large-scale circulation is indeed very stable among all sensitivity experiments and the Northern Hemisphere (NH) flow pattern does not depend on Greenland's topography in the Eemian. In contrast, Greenland's surface energy balance is clearly influenced by changes in the GrIS topography and this impact is seasonally diverse. In winter, the variable reacting strongest to changes in the topography is the sensible heat flux (SHF). The reason is its dependence on surface winds, which themselves are controlled to a large extent by the shape of the GrIS. Hence, regions where a receding GrIS causes higher surface wind velocities also experience anomalous warming through SHF. Vice-versa, regions that become flat and ice-free are characterized by low wind speeds, low SHF, and anomalous low winter temperatures. In summer, we find surface warming induced by a decrease in surface albedo in deglaciated areas and regions which experience surface melting. The Eemian temperature records derived from Greenland proxies, thus, likely include a temperature signal arising from changes in the GrIS topography. For the Eemian ice found in the NEEM core, our model suggests that up to 3.1 °C of the annual mean Eemian warming can be attributed to these topography-related processes and hence is not necessarily linked to large-scale climate variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the threedimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years ‘‘target’’ simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-tohigh latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied verywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained largescale observations of this field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.