861 resultados para Grid-Connected InvertersInverter
Resumo:
A new lead(II) phosphonate, Pb[(PO3)(2)C(OH)CH3]center dot H2O (1) was hydrothermally synthesized and characterized by IR, elemental analysis, UV, TGA, SEM, and single crystal X-ray diffraction analysis. X-ray crystallographic study showed that complex 1 has a two-dimensional double layered hybrid structure containing interconnected 4- and 12-membered rings and shows an unusual (5,5)-connected (4(7) . 6(3)) (4(8) .6(2)) topology. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Certain salient structures in images attract our immediate attention without requiring a systematic scan. We present a method for computing saliency by a simple iterative scheme, using a uniform network of locally connected processing elements. The network uses an optimization approach to produce a "saliency map," a representation of the image emphasizing salient locations. The main properties of the network are: (i) the computations are simple and local, (ii) globally salient structures emerge with a small number of iterations, and (iii) as a by-product of the computations, contours are smoothed and gaps are filled in.
Resumo:
Reconstructing a surface from sparse sensory data is a well known problem in computer vision. Early vision modules typically supply sparse depth, orientation and discontinuity information. The surface reconstruction module incorporates these sparse and possibly conflicting measurements of a surface into a consistent, dense depth map. The coupled depth/slope model developed here provides a novel computational solution to the surface reconstruction problem. This method explicitly computes dense slope representation as well as dense depth representations. This marked change from previous surface reconstruction algorithms allows a natural integration of orientation constraints into the surface description, a feature not easily incorporated into earlier algorithms. In addition, the coupled depth/ slope model generalizes to allow for varying amounts of smoothness at different locations on the surface. This computational model helps conceptualize the problem and leads to two possible implementations- analog and digital. The model can be implemented as an electrical or biological analog network since the only computations required at each locally connected node are averages, additions and subtractions. A parallel digital algorithm can be derived by using finite difference approximations. The resulting system of coupled equations can be solved iteratively on a mesh-pf-processors computer, such as the Connection Machine. Furthermore, concurrent multi-grid methods are designed to speed the convergence of this digital algorithm.
Resumo:
Presenting a complete guide for the planning, design and implementation of solar PV systems for off-grid applications, this book features analysis based on the authors’ own laboratory testing as well as their in the field experiences. Incorporating the latest developments in smart-digital and control technologies into the design criteria of the PV system, this book will also focus on how to integrate newer smart design approaches and techniques for improving the efficiency, reliability and flexibility of the entire system. The design and implementation of India’s first-of its-kind Smart Mini-Grid system (SMG) at TERI premises, which involves the integration of multiple renewable energy resources (including solar PV) through smart controllers for managing the load intelligently and effectively is presented as a key case study. Maximizing reader insights into the performance of different components of solar PV systems under different operating conditions, the book will be of interest to graduate students, researchers, PV designers, planners, and practitioners working in the area of solar PV design, implementation and assessment.
Resumo:
Tese de Doutoramento apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutor em Ciências Sociais.
Resumo:
http://moa.umdl.umich.edu/cgi/sgml/moa-idx?notisid=AAU8319 View book via University of Michigan
Resumo:
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. How these hexagonal patterns arise has excited intense interest. It has previously been shown how a selforganizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? A neural model is proposed that converts path integration signals into hexagonal grid cell patterns of multiple scales. This GRID model creates only grid cell patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support a unified computational framework for explaining how entorhinal-hippocampal interactions support spatial navigation.
Resumo:
Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself.
Resumo:
A neural network model, called an FBF network, is proposed for automatic parallel separation of multiple image figures from each other and their backgrounds in noisy grayscale or multi-colored images. The figures can then be processed in parallel by an array of self-organizing Adaptive Resonance Theory (ART) neural networks for automatic target recognition. An FBF network can automatically separate the disconnected but interleaved spirals that Minsky and Papert introduced in their book Perceptrons. The network's design also clarifies why humans cannot rapidly separate interleaved spirals, yet can rapidly detect conjunctions of disparity and color, or of disparity and motion, that distinguish target figures from surrounding distractors. Figure-ground separation is accomplished by iterating operations of a Feature Contour System (FCS) and a Boundary Contour System (BCS) in the order FCS-BCS-FCS, hence the term FBF, that have been derived from an analysis of biological vision. The FCS operations include the use of nonlinear shunting networks to compensate for variable illumination and nonlinear diffusion networks to control filling-in. A key new feature of an FBF network is the use of filling-in for figure-ground separation. The BCS operations include oriented filters joined to competitive and cooperative interactions designed to detect, regularize, and complete boundaries in up to 50 percent noise, while suppressing the noise. A modified CORT-X filter is described which uses both on-cells and off-cells to generate a boundary segmentation from a noisy image.
Resumo:
Dual-layer frequency-selective subwavelength grid polarizers on thin-film dielectric substrates are proposed for THz and sub-THz applications. The dual-layer grids possess enhanced (squared) polarizing efficiency at a sequence of discrete frequencies in reflection and within extended frequency bands in transmission as compared to conventional single grids.
Resumo:
A massive change is currently taking place in the manner in which power networks are operated. Traditionally, power networks consisted of large power stations which were controlled from centralised locations. The trend in modern power networks is for generated power to be produced by a diverse array of energy sources which are spread over a large geographical area. As a result, controlling these systems from a centralised controller is impractical. Thus, future power networks will be controlled by a large number of intelligent distributed controllers which must work together to coordinate their actions. The term Smart Grid is the umbrella term used to denote this combination of power systems, artificial intelligence, and communications engineering. This thesis focuses on the application of optimal control techniques to Smart Grids with a focus in particular on iterative distributed MPC. A novel convergence and stability proof for iterative distributed MPC based on the Alternating Direction Method of Multipliers is derived. Distributed and centralised MPC, and an optimised PID controllers' performance are then compared when applied to a highly interconnected, nonlinear, MIMO testbed based on a part of the Nordic power grid. Finally, a novel tuning algorithm is proposed for iterative distributed MPC which simultaneously optimises both the closed loop performance and the communication overhead associated with the desired control.
Resumo:
The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.
Resumo:
info:eu-repo/semantics/submittedForPublication