910 resultados para Goddard Space Flight Center. Mission Operations and Data Systems Directorate.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mm NH4+ (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two lanthanum(III) [2,2,2]cryptates, [LaCl[2,2,2](H2O)]Cl-2.H2O (1) and [La(CF3SO3)[2,2,2](DMF)] (CF3SO3)(2) (2) have been prepared by the reaction of LaCl3 and La(CF3SO3)(3) with [2,2,2]cryptand, respectively and their crystal structures have been determ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://www.archive.org/details/thesundayschooli00trumuoft

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://www.archive.org/details/christianeducati008935mbp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently developed an approach for testing the accuracy of network inference algorithms by applying them to biologically realistic simulations with known network topology. Here, we seek to determine the degree to which the network topology and data sampling regime influence the ability of our Bayesian network inference algorithm, NETWORKINFERENCE, to recover gene regulatory networks. NETWORKINFERENCE performed well at recovering feedback loops and multiple targets of a regulator with small amounts of data, but required more data to recover multiple regulators of a gene. When collecting the same number of data samples at different intervals from the system, the best recovery was produced by sampling intervals long enough such that sampling covered propagation of regulation through the network but not so long such that intervals missed internal dynamics. These results further elucidate the possibilities and limitations of network inference based on biological data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the generic attacks and countermeasures for block cipher based message authentication code algorithms (MAC) in sensor applications is undertaken; the conclusions are used in the design of two new MAC constructs Quicker Block Chaining MAC1 (QBC-MAC1) and Quicker Block Chaining MAC2 (QBC-MAC2). Using software simulation we show that our new constructs point to improvements in usage of CPU instruction clock cycle and energy requirement when benchmarked against the de facto Cipher Block Chaining MAC (CBC-MAC) based construct used in the TinySec security protocol for wireless sensor networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the optimum design of pilot-symbol-assisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in medium-rate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.