957 resultados para Glucose homeostasis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on homology with GLUT1-5, we have isolated a cDNA for a novel glucose transporter, GLUTX1. This cDNA encodes a protein of 478 amino acids that shows between 29 and 32% identity with rat GLUT1-5 and 32-36% identity with plant and bacterial hexose transporters. Unlike GLUT1-5, GLUTX1 has a short extracellular loop between transmembrane domain (TM) 1 and TM2 and a long extracellular loop between TM9 and TM10 that contains the only N-glycosylation site. When expressed in Xenopus oocytes, GLUTX1 showed strong transport activity only after suppression of a dileucine internalization motif present in the amino-terminal region. Transport activity was inhibited by cytochalasin B and partly competed by D-fructose and D-galactose. The Michaelis-Menten constant for glucose was approximately 2 mM. When translated in reticulocytes lysates, GLUTX1 migrates as a 35-kDa protein that becomes glycosylated in the presence of microsomal membranes. Western blot analysis of GLUTX1 transiently expressed in HEK293T cells revealed a diffuse band with a molecular mass of 37-50 kDa that could be converted to a approximately 35-kDa polypeptide following enzymatic deglycosylation. Immunofluorescence microscopy detection of GLUTX1 transfected into HEK293T cells showed an intracellular staining. Mutation of the dileucine internalization motif induced expression of GLUTX1 at the cell surface. GLUTX1 mRNA was detected in testis, hypothalamus, cerebellum, brainstem, hippocampus, and adrenal gland. We hypothesize that, in a similar fashion to GLUT4, in vivo cell surface expression of GLUTX1 may be inducible by a hormonal or other stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:: Attenuated innate immune responses to the intestinal microbiota have been linked to the pathogenesis of Crohn's disease (CD). Recent genetic studies have revealed that hypofunctional mutations of NLRP3, a member of the NOD-like receptor (NLR) superfamily, are associated with an increased risk of developing CD. NLRP3 is a key component of the inflammasome, an intracellular danger sensor of the innate immune system. When activated, the inflammasome triggers caspase-1-dependent processing of inflammatory mediators, such as IL-1β and IL-18. METHODS:: In the current study we sought to assess the role of the NLRP3 inflammasome in the maintenance of intestinal homeostasis through its regulation of innate protective processes. To investigate this role, Nlrp3(-/-) and wildtype mice were assessed in the dextran sulfate sodium and 2,4,6-trinitrobenzenesulfonic acid models of experimental colitis. RESULTS:: Nlrp3(-/-) mice were found to be more susceptible to experimental colitis, an observation that was associated with reduced IL-1β, reduced antiinflammatory cytokine IL-10, and reduced protective growth factor TGF-β. Macrophages isolated from Nlrp3(-/-) mice failed to respond to bacterial muramyl dipeptide. Furthermore, Nlrp3-deficient neutrophils exhibited reduced chemotaxis and enhanced spontaneous apoptosis, but no change in oxidative burst. Lastly, Nlrp3(-/-) mice displayed altered colonic β-defensin expression, reduced colonic antimicrobial secretions, and a unique intestinal microbiota. CONCLUSIONS:: Our data confirm an essential role for the NLRP3 inflammasome in the regulation of intestinal homeostasis and provide biological insight into disease mechanisms associated with increased risk of CD in individuals with NLRP3 mutations. (Inflamm Bowel Dis 2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metabolic hypothesis is presented for insulin resistance in obesity, in the presence or absence of Type 2 (non-insulin-dependent) diabetes mellitus. It is based on physiological mechanisms including a series of negative feed-back mechanisms, with the inhibition of the function of the glycogen cycle in skeletal muscle as a consequence of decreased glucose utilization resulting from increased lipid oxidation in the obese. It considers the inhibition of glycogen synthase activity together with inhibition of glucose storage and impaired glucose tolerance. The prolonged duration of increased lipid oxidation, considered as the initial cause, may lead to Type 2 diabetes. This hypothesis is compatible with others based on the inhibition of insulin receptor kinase and of glucose transporter activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the mechanisms that prevent an increase in gluconeogenesis from increasing hepatic glucose output, six healthy women were infused with [1-13C]fructose (22 mumol.kg-1.min-1), somatostatin, insulin, and glucagon. In control experiment, non-13C-enriched fructose was infused at the same rate without somatostatin, and [U-13C]glucose was infused to measure specifically plasma glucose oxidation. Endogenous glucose production (EGP, [6,6-2H]glucose), net carbohydrate oxidation (CHOox, indirect calorimetry), and fructose oxidation (13CO2) were measured. EGP rate did not increase after fructose infusion with (13.1 +/- 1.2 vs. 12.9 +/- 0.3 mumol.kg-1.min-1) and without (10.3 +/- 0.5 vs. 9.7 +/- 0.5 mumol.kg-1.min-1) somatostatin, despite the fact that gluconeogenesis increased. Nonoxidative fructose disposal, corresponding mainly to glycogen synthesis, was threefold net glycogen deposition, the latter calculated as fructose infusion minus CHOox (14.8 +/- 1.1 and 4.3 +/- 2.0 mumol.kg-1.min-1). It is concluded that 1) the mechanism by which EGP remains constant when gluconeogenesis from fructose increases is independent of changes in insulin and 2) simultaneous breakdown and synthesis of glycogen occurred during fructose infusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HYPOTHESIS: Liver transplantation results in hepatic denervation. This may produce alterations of liver energy and substrate metabolism, which may contribute to weight gain after liver transplantation. DESIGN: Prospective clinical study. SETTING: Liver transplantation clinics in a university hospital. PATIENTS: Seven nondiabetic patients with cirrhosis were recruited while on a waiting list for liver transplantation. Seven healthy subjects were recruited as controls. INTERVENTION: Orthotopic liver transplantation. MAIN OUTCOME MEASURES: Evaluation of energy and substrate metabolism after ingestion of a glucose load with indirect calorimetry was performed before, 2 to 6 weeks after, and 5 to 19 months after transplantation. Whole-body glucose oxidation and storage and glucose-induced thermogenesis were calculated. RESULTS: Patients with cirrhosis had modestly elevated resting energy expenditure and normal glucose-induced thermogenesis and postprandial glucose oxidation and storage. These measures remained unchanged after liver transplantation despite a significant increase in postprandial glycemia. Patients, however, gained an average of 3 kg of body weight after 5 to 19 months compared with their weight before transplantation. CONCLUSION: Liver denervation secondary to transplantation does not lead to alterations of energy metabolism after ingestion of a glucose load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orexigenic neurotransmitter neuropeptide Y (NPY) plays a central role in the hypothalamic control of food intake and energy balance. NPY also exerts an inhibition of the gonadotrope axis that could be important in the response to poor metabolic conditions. In contrast, leptin provides an anorexigenic signal to centrally control the body needs in energy. Moreover, leptin contributes to preserve adequate reproductive functions by stimulating the activity of the gonadotrope axis. It is of interest that hypothalamic NPY represents a primary target of leptin actions. To evaluate the importance of the NPY Y1 and Y5 receptors in the downstream pathways modulated by leptin and controlling energy metabolism as well as the activity of the gonadotrope axis, we studied the effects of leptin administration on food intake and reproductive functions in mice deficient for the expression of either the Y1 or the Y5 receptor. Furthermore, the role of the Y1 receptor in leptin resistance was determined in leptin-deficient ob/ob mice bearing a null mutation in the NPY Y1 locus. Results point to a crucial role for the NPY Y1 receptor in mediating the NPY pathways situated downstream of leptin actions and controlling food intake, the onset of puberty, and the maintenance of reproductive functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of cell type-specific Na+,K+-ATPase isozymes in function-related glucose metabolism was studied using differentiated rat brain cell aggregate cultures. In mixed neuron-glia cultures, glucose utilization, determined by measuring the rate of radiolabeled 2-deoxyglucose accumulation, was markedly stimulated by the voltage-dependent sodium channel agonist veratridine (0.75 micromol/L), as well as by glutamate (100 micromol/L) and the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) (10 micromol/L). Significant stimulation also was elicited by elevated extracellular potassium (12 mmol/L KCl), which was even more pronounced at 30 mmol/L KCl. In neuron-enriched cultures, a similar stimulation of glucose utilization was obtained with veratridine, specific ionotropic glutamate receptor agonists, and 30 mmol/L but not 12 mmol/L KCl. The effects of veratridine, glutamate, and NMDA were blocked by specific antagonists (tetrodotoxin, CNQX, or MK801, respectively). Low concentrations of ouabain (10(-6) mol/L) prevented stimulation by the depolarizing agents but reduced only partially the response to 12 mmol/L KCl. Together with previous data showing cell type-specific expression of Na+,K+-ATPase subunit isoforms in these cultures, the current results support the view that distinct isoforms of Na+,K+-ATPase regulate glucose utilization in neurons in response to membrane depolarization, and in glial cells in response to elevated extracellular potassium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The hyperglycemic hyperinsulinemic clamp technique using intraduodenally infused glucose is an attractive tool for studying postprandial glucose metabolism under strictly controlled conditions. Because it requires the use of somatostatin (SST), we examined, in this study, the effect of SST on intestinal glucose absorption. CONTEXT: Twenty-six normal volunteers were given a constant 3-h intraduodenal infusion of glucose (6 mg.kg(-1).min(-1)) labeled with [2-(3)H]glucose for glucose absorption measurement. During glucose infusion, 19 subjects received iv SST at doses of 10-100 ng.kg(-1).min(-1) plus insulin and glucagon, and seven subjects were studied under control conditions. In the controls, glucose was absorbed at a rate that, after a 20-min lag period, equaled the infusion rate. RESULTS: With all the doses of SST tested, absorption was considerably delayed but equaled the rate of infusion after 3 h. At that time, only 5 +/- 2% of the total amount of infused glucose was unabsorbed in the control subjects vs. 36 +/- 2% (P < 0.001) in the SST-infused subjects. In the latter, the intraluminal residue was almost totally absorbed within 40 min of the cessation of SST infusion. At the lowest dose of SST tested (10 ng.kg(-1).min(-1)), suppression of insulin secretion was incomplete. CONCLUSION: These properties of SST hamper the use of intraduodenal hyperglycemic hyperinsulinemic clamps as a tool for exploring postprandial glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-2 plays a pivotal role in regulating the adaptive immune system by controlling the survival and proliferation of regulatory T (Treg) cells, which are required for the maintenance of immune tolerance. Moreover, IL-2 is implicated in the differentiation and homeostasis of effector T-cell subsets, including T(H)1, T(H)2, T(H)17, and memory CD8+ T cells. The IL-2 receptor is composed of 3 distinct subunits, namely the alpha (CD25), beta (CD122), and gamma (gammac) chains. Of crucial importance for the delivery of IL-2 signals to Treg cells is the expression of CD25, which, along with CD122 and gammac, confers high affinity binding to IL-2. Notably, recent findings suggest a novel role for CD25, whereby CD25 molecules on Treg cells and possibly other cells are capable of influencing T-cell homeostasis by means of IL-2 deprivation. This review explores these findings and integrates them into our current understanding of T-cell homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 7 is essential for the survival of naive T lymphocytes. Despite its importance, its cellular source in the periphery remains poorly defined. Here we report a critical function for lymph node access in T cell homeostasis and identify T zone fibroblastic reticular cells in these organs as the main source of interleukin 7. In vitro, T zone fibroblastic reticular cells were able to prevent the death of naive T lymphocytes but not of B lymphocytes by secreting interleukin 7 and the CCR7 ligand CCL19. Using gene-targeted mice, we demonstrate a nonredundant function for CCL19 in T cell homeostasis. Our data suggest that lymph nodes and T zone fibroblastic reticular cells have a key function in naive CD4(+) and CD8(+) T cell homeostasis by providing a limited reservoir of survival factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Several studies have shown that in diabetic patients, the glycemic profile was disturbed after intra-articular injection of corticosteroids. Little is known about the impact of epidural injection in such patients. The goal of this study was double, at first comparing the glycaemic profile in diabetic patients after a unique injection of 80 mg of acetate methylprednisolone either intra-articular or epidural and secondly to compare the amount of systemic diffusion of the drug after both procedures. METHODS: Seventeen patients were included. Glycemic changes were compared in 9 diabetic patients following intra-articular (4 patients) and epidural injections (5 patients). Epidural injections were performed using the sacral route under fluoroscopic control in patients with lumbar spinal stenosis. Diabetes control had to stable for more than 10 days and the renal function to be preserved. Blood glucose was monitored using a validated continuous measuring device (GMS, Medtronic) the day before and for two days following the injection. Results were expressed in the form of daily glycemic profiles and as by mean, peak and minimal values +/ SD. The urinary excretion of methylprednisolone after the 2 routes of injection was analyzed in 8 patients (4 in each group). Urine samples were cropped one hour before the injections, then 4 times during the first day and 3 times a week for 2 weeks. The measurements included the free and conjugated fraction RESULTS: The glycaemic profile remains unchanged with no significant changes in the group of the 5 diabetic patients receiving epidural injections. On the other end, the average peak and mean values were enhanced up to 3 mmol/l above baseline two days after the infiltration in the groups of the 4 diabetic patients infiltrated intra-articular. The mean urinary excretion of the steroid was about ten times higher in the intra-articular versus epidural group: 7000 ng/ml versus 700 ng/ml. Looking at each individual there were marked differences especially after intra-articular injections. CONCLUSION: This is the first study to show that a single epidural steroid injection of 80 mg depot methylprednisolone had no effect on the glycemic control in diabetic patients. The absence of glycemic control changes correlated well with the very low urinary excretion of the drug after epidural injection. Trial registration NCT01420497.