949 resultados para Global R
Resumo:
Rock-pocket and honeycomb defects impair overall stiffness, accelerate aging, reduce service life, and cause structural problems in hardened concrete members. Traditional methods for detecting such deficient volumes involve visual observations or localized nondestructive methods, which are labor-intensive, time-consuming, highly sensitive to test conditions, and require knowledge of and accessibility to defect locations. The authors propose a vibration response-based nondestructive technique that combines experimental and numerical methodologies for use in identifying the location and severity of internal defects of concrete members. The experimental component entails collecting mode shape curvatures from laboratory beam specimens with size-controlled rock pocket and honeycomb defects, and the numerical component entails simulating beam vibration response through a finite element (FE) model parameterized with three defect-identifying variables indicating location (x, coordinate along the beam length) and severity of damage (alpha, stiffness reduction and beta, mass reduction). Defects are detected by comparing the FE model predictions to experimental measurements and inferring the low number of defect-identifying variables. This method is particularly well-suited for rapid and cost-effective quality assurance for precast concrete members and for inspecting concrete members with simple geometric forms.
Resumo:
Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.
Resumo:
OBJECTIVE: The aim of our study was to correlate global T2 values of microfracture repair tissue (RT) with clinical outcome in the knee joint. METHODS: We assessed 24 patients treated with microfracture in the knee joint. Magnetic resonance (MR) examinations were performed on a 3T MR unit, T2 relaxation times were obtained with a multi-echo spin-echo technique. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. Slices covering the cartilage RT were selected and region of interest analysis was done. An individual T2 index was calculated with global mean T2 of the RT and global mean T2 of normal, hyaline cartilage. The Lysholm score and the International Knee Documentation Committee (IKDC) knee evaluation forms were used for the assessment of clinical outcome. Bivariate correlation analysis and a paired, two tailed t test were used for statistics. RESULTS: Global T2 values of the RT [mean 49.8ms, standards deviation (SD) 7.5] differed significantly (P<0.001) from global T2 values of normal, hyaline cartilage (mean 58.5ms, SD 7.0). The T2 index ranged from 61.3 to 101.5. We found the T2 index to correlate with outcome of the Lysholm score (r(s)=0.641, P<0.001) and the IKDC subjective knee evaluation form (r(s)=0.549, P=0.005), whereas there was no correlation with the IKDC knee form (r(s)=-0.284, P=0.179). CONCLUSION: These findings indicate that T2 mapping is sensitive to assess RT function and provides additional information to morphologic MRI in the monitoring of microfracture.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) is associated with features of the metabolic syndrome (MetS) and may be an expression of the syndrome within the liver. Using screening data from the Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) study (n = 42 149), we examined whether alanine aminotransferase (ALT), a biomarker for NAFLD, clustered with features of MetS and whether the clusters differed across global geographic regions.
Resumo:
Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship.
Resumo:
We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.
Resumo:
The thermometer-based global surface temperature time series (GST) commands a prominent role in the evidence for global warming, yet this record has considerable uncertainty. An independent record with better geographic coverage would be valuable in understanding recent change in the context of natural variability. We compiled the Paleo Index (PI) from 173 temperature-sensitive proxy time series (corals, ice cores, speleothems, lake and ocean sediments, historical documents). Each series was normalized to produce index values of change relative to a 1901–2000 base period; the index values were then averaged. From 1880 to 1995, the index trends significantly upward, similar to the GST. Smaller-scale aspects of the GST including two warming trends and a warm interval during the 1940s are also observed in the PI. The PI extends to 1730 with 67 records. The upward trend appears to begin in the early 19th century but the year-to-year variability is large and the 1730–1929 trend is small.
Resumo:
OBJECTIVES The aim of this study was to describe the process to obtain Food and Drug Administration (FDA) approval for the expanded indication for treatment with the Resolute zotarolimus-eluting stent (R-ZES) (Medtronic, Inc., Santa Rosa, California) in patients with coronary artery disease and diabetes. BACKGROUND The R-ZES is the first drug-eluting stent specifically indicated in the United States for percutaneous coronary intervention in patients with diabetes. METHODS We pooled patient-level data for 5,130 patients from the RESOLUTE Global Clinical Program. A performance goal prospectively determined in conjunction with the FDA was established as a rate of target vessel failure at 12 months of 14.5%. In addition to the FDA pre-specified cohort of less complex patients with diabetes (n = 878), we evaluated outcomes of the R-ZES in all 1,535 patients with diabetes compared with all 3,595 patients without diabetes at 2 years. RESULTS The 12-month rate of target vessel failure in the pre-specified diabetic cohort was 7.8% (upper 95% confidence interval: 9.51%), significantly lower than the performance goal of 14.5% (p < 0.001). After 2 years, the cumulative incidence of target lesion failure in patients with noninsulin-treated diabetes was comparable to that of patients without diabetes (8.0% vs. 7.1%). The higher risk insulin-treated population demonstrated a significantly higher target lesion failure rate (13.7%). In the whole population, including complex patients, rates of stent thrombosis were not significantly different between patients with and without diabetes (1.2% vs. 0.8%). CONCLUSIONS The R-ZES is safe and effective in patients with diabetes. Long-term clinical data of patients with noninsulin-treated diabetes are equivalent to patients without diabetes. Patients with insulin-treated diabetes remain a higher risk subset. (The Medtronic RESOLUTE Clinical Trial; NCT00248079; Randomized, Two-arm, Non-inferiority Study Comparing Endeavor-Resolute Stent With Abbot Xience-V Stent [RESOLUTE-AC]; NCT00617084; The Medtronic RESOLUTE US Clinical Trial (R-US); NCT00726453; RESOLUTE International Registry: Evaluation of the Resolute Zotarolimus-Eluting Stent System in a 'Real-World' Patient Population [R-Int]; NCT00752128; RESOLUTE Japan-The Clinical Evaluation of the MDT-4107 Drug-Eluting Coronary Stent [RJ]; NCT00927940).
Resumo:
BACKGROUND Overlapping first generation sirolimus- and paclitaxel-eluting stents are associated with persistent inflammation, fibrin deposition and delayed endothelialisation in preclinical models, and adverse angiographic and clinical outcomes--including death and myocardial infarction (MI)--in clinical studies. OBJECTIVES To establish as to whether there are any safety concerns with newer generation drug-eluting stents (DES). DESIGN Propensity score adjustment of baseline anatomical and clinical characteristics were used to compare clinical outcomes (Kaplan-Meier estimates) between patients implanted with overlapping DES (Resolute zotarolimus-eluting stent (R-ZES) or R-ZES/other DES) against no overlapping DES. Additionally, angiographic outcomes for overlapping R-ZES and everolimus-eluting stents were evaluated in the randomised RESOLUTE All-Comers Trial. SETTING Patient level data from five controlled studies of the RESOLUTE Global Clinical Program evaluating the R-ZES were pooled. Enrollment criteria were generally unrestrictive. PATIENTS 5130 patients. MAIN OUTCOME MEASURES 2-year clinical outcomes and 13-month angiographic outcomes. RESULTS 644 of 5130 patients (12.6%) in the RESOLUTE Global Clinical Program underwent overlapping DES implantation. Implantation of overlapping DES was associated with an increased frequency of MI and more complex/calcified lesion types at baseline. Adjusted in-hospital, 30-day and 2-year clinical outcomes indicated comparable cardiac death (2-year overlap vs non-overlap: 3.0% vs 2.1%, p=0.36), major adverse cardiac events (13.3% vs 10.7%, p=0.19), target-vessel MI (3.9% vs 3.4%, p=0.40), clinically driven target vessel revascularisation (7.7% vs 6.5%, p=0.32), and definite/probable stent thrombosis (1.4% vs 0.9%, p=0.28). 13-month adjusted angiographic outcomes were comparable between overlapping and non-overlapping DES. CONCLUSIONS Overlapping newer generation DES are safe and effective, with comparable angiographic and clinical outcomes--including repeat revascularisation--to non-overlapping DES.
Resumo:
Methane is an important greenhouse gas, responsible for about 20 of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios � which differ in fossil fuel and microbial emissions � to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.
Resumo:
The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.