943 resultados para Genetic Programming, NPR, Evolutionary Art


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defaunation, the loss or population decline of medium and large native vertebrates represents a significant threat to the biodiversity of tropical ecosystems. Here we review the anthropogenic drivers of defaunation, provide a brief historical account of the development of this field, and analyze the types of biological consequences of this impact on the structure and functioning of tropical ecosystems. We identify how defaunation, operating at a variety of scales, from the plot to the global level, affects biological systems along a gradient of processes ranging from plant physiology (vegetative and reproductive performance) and animal behavior (movement, foraging and dietary patterns) in the immediate term; to plant population and community dynamics and structure leading to disruptions of ecosystem functioning (and thus degrading environmental services) in the short to medium term; to evolutionary changes (phenotypic changes and population genetic structure) in the long-term. We present such a synthesis as a preamble to a series of papers that provide a compilation of our current understanding of the impact and consequences of tropical defaunation. We close by identifying some of the most urgent needs and perspectives that warrant further study to improve our understanding of this field, as we confront the challenges of living in a defaunated world. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Transposable elements (TEs) have the potential to produce broad changes in the genomes of their hosts, acting as a type of evolutionary toolbox and generating a collection of new regulatory and coding sequences. Several TE classes have been studied in Neotropical cichlids; however, the information gained from these studies is restricted to the physical chromosome mapping, whereas the genetic diversity of the TEs remains unknown. Therefore, the genomic organization of the non-LTR retrotransposons Rex1, Rex3, and Rex6 in five Amazonian cichlid species was evaluated using physical chromosome mapping and DNA sequencing to provide information about the role of TEs in the evolution of cichlid genomes. Results: Physical mapping revealed abundant TE clusters dispersed throughout the chromosomes. Furthermore, several species showed conspicuous clusters accumulation in the centromeric and terminal portions of the chromosomes. These TE chromosomal sites are associated with both heterochromatic and euchromatic regions. A higher number of Rex1 clusters were observed among the derived species. The Rex1 and Rex3 nucleotide sequences were more conserved in the basal species than in the derived species; however, this pattern was not observed in Rex6. In addition, it was possible to observe conserved blocks corresponding to the reverse transcriptase fragment of the Rex1 and Rex3 clones and to the endonuclease of Rex6. Conclusion: Our data showed no congruence between the Bayesian trees generated for Rex1, Rex3 and Rex6 of cichlid species and phylogenetic hypothesis described for the group. Rex1 and Rex3 nucleotide sequences were more conserved in the basal species whereas Rex6 exhibited high substitution rates in both basal and derived species. The distribution of Rex elements in cichlid genomes suggests that such elements are under the action of evolutionary mechanisms that lead to their accumulation in particular chromosome regions, mostly in heterochromatins. © 2013 Schneider et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a hybrid methodology based on Graph-Coloring and Genetic Algorithm (GA) to solve the Wavelength Assignment (WA) problem in optical networks, impaired by physical layer effects. Our proposal was developed for a static scenario where the physical topology and traffic matrix are known a priori. First, we used fixed shortest-path routing to attend demand requests over the physical topology and the graph-coloring algorithm to minimize the number of necessary wavelengths. Then, we applied the genetic algorithm to solve WA. The GA finds the wavelength activation order on the wavelengths grid with the aim of reducing the Cross-Phase Modulation (XPM) effect; the variance due to the XPM was used as a function of fitness to evaluate the feasibility of the selected WA solution. Its performance is compared with the First-Fit algorithm in two different scenarios, and has shown a reduction in blocking probability up to 37.14% when considered both XPM and residual dispersion effects and up to 71.42% when only considered XPM effect. Moreover, it was possible to reduce by 57.14% the number of wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uma importante etapa na biologia da invasão é acessar variáveis biológicas que podem predizer o sucesso de invasão. O estudo da genética, evolução e interações entre invasores e espécies nativas no ambiente invadido pode prover uma oportunidade única para o estudo dos processos em genética de populações e a capacidade de uma espécie ampliar seu habitat. Nesse trabalho, nos utilizamos dados de marcadores de DNA microssatélites para testar se a variação genética é relacionada a pressão de propágulo na invasão bem sucedida do predador de topo (o ciclídeo Amazônico Cichla) nos rios do Sudeste Brasileiro. Populações invasoras de Cichla vem impactando negativamente diversas comunidades de água doce no Sudeste brasileiro deste 1960. A redução da variação genética foi observada em todas populações invasoras, tanto para Cichla kelberi (CK) como Cichla piquiti (CP). Por exemplo, a heterozigose foi menor no ambiente invadido quando comparada com as populações nativas da bacia Amazônica (CP HE = 0.179/0.44; CK HE = 0.258/0.536 respectivamente). Assim, apesar do sucesso da invasão de Cichla no sudoeste do Brasil, baixa diversidade genética foi observada nas populações introduzidas. Nós sugerimos que uma combinação de fatores, como as estratégias reprodutivas de Cichla, o efeito de "armadilha evolutiva" e a hipótese de resistências biótica superam o efeito que a diversidade genética depauperada exerce, sendo aspectos-chave na invasão desse predador de topo de cadeia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connectivity is the basic factor for the proper operation of any wireless network. In a mobile wireless sensor network it is a challenge for applications and protocols to deal with connectivity problems, as links might get up and down frequently. In these scenarios, having knowledge of the node remaining connectivity time could both improve the performance of the protocols (e.g. handoff mechanisms) and save possible scarce nodes resources (CPU, bandwidth, and energy) by preventing unfruitful transmissions. The current paper provides a solution called Genetic Machine Learning Algorithm (GMLA) to forecast the remainder connectivity time in mobile environments. It consists in combining Classifier Systems with a Markov chain model of the RF link quality. The main advantage of using an evolutionary approach is that the Markov model parameters can be discovered on-the-fly, making it possible to cope with unknown environments and mobility patterns. Simulation results show that the proposal is a very suitable solution, as it overcomes the performance obtained by similar approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV