620 resultados para Gasoline.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer s ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current natural gas production of 52 Mm3d-1 and the large projects for its expansion has been setting new boundaries for the Brazilian industry of oil and gas. So far, one of the biggest challenges regards to the logistics for gas transportation from offshore fields. Therefore, the transformation of natural gas into gasoline, diesel and/or olefins via Fischer-Tropsch synthesis would be an alternative to this matter. In this work, the production of hydrocarbons by Fischer-Tropsch synthesis in a slurry reactor was investigated and a perovskite-type catalyst (LayCu0,4Fe0,6O3 ± d) was used with y varying from 0 to 1 on a molar basis. In addition, Nb2O5 support was also applied in order to observe the selectivity of the produced hydrocarbons by the Fischer-Tropsch process. It is shown that the hydrogen conversion was influenced by the support as well as the different phases of the samples. The kinetic results for the CO2 production suffered great influence with the introduction of the Nb2O5 support throughout the series of samples studied. The catalysts allowed obtaining welldefined cuts of hydrocarbons in the range of C1-C6 and C17-C28, and these results were clearly influenced by the support and the lanthanum content. The higher olefin/paraffin ratio obtained was 1.8 when using a non-supported perovskite with y equal to 0.8. This would indicate the suitability of using this material for the production of olefins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical nature of the hidrocarbons found in gasoline directly affects the formation of oxidation complexes known as gums. Such complexes are slightly soluble in gasoline and their formation is delayed with the use of inhibitors, known as antioxidants. In this study, a synthetic compound (βnaphtol) and a natural subproduct (hydrogenated cardanol, derived from cashewnut shell liquid CNSL) have been used in order to generate novel antioxidant substances. These compounds were submitted to chemical reactions including alkylation, nitration and reduction, with the purpose of forming the following derivatives: 6(Nethyl,Nethylamino)βnaphtol (AO1); 6(Nethyl,Ndiethylamino)βnaphtol (AO2); aminoβnaphtol (AO3); 2(Nethyl,Nethylamino)pentadecylphenol (AOC1), 2(Nethyl,Ndiethylamino)pentadecylphenol (AOC2) and aminopentadecylphenol (AOC3). The derivatives were subjected to accelerated oxidative stability assays (Potential Gum and Induction Period) and to storage assays (Washed Gum and ASTM Color) during six months, with naphtha provided by the petroleum refinery RPBC (Refinaria Presidente Bernardes de Cubatão, in Brazil). The results for the derivatives were compared to those for commercial additives [DBPC (2,6ditbutyl4methylpcresol) and PDA (N,N disecbutylpphenylenediamine)], which were also added to the naphtha produced at RPBC at the moment of sampling. From all tested antioxidants, the novel antioxidant AOC1 (derived from hydrogenated cardanol) yielded a better global performance. During the period of time in which the naphtha was stored, an examination of this material was carried out in parallel, using the mass spectrometry technique. This study allowed to monitor the formation of a triolefinic compound, as well as the observation of subsequent formation and rupture of the olefinic constituents. As an eventual result from these experimental investigations, a reaction route leading to gum formation has been suggested

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer's ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination Humberto Neves Maia de Oliveira Tese de Doutorado PPGEQ/PRH-ANP 14/UFRN of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biodiesel is increasing as an attractive fuel due to the depleting fossil fuel resources and environmental degradation. This paper presents results of an investigation on the potentials of biodiesel as an alternative fuel and main substitute of diesel oil, comparing the CO2 emissions of the main fuels in the Brazilian market with those of biodiesel, in pure form or blended in different proportions with diesel oil (2%, 5%, and 20%, called B2, B5, and B20, respectively). The results of the study are shown in ton CO2 per m(3) and ton CO2 per year of fuel. The fuels were analyzed considering their chemical composition, stoichiometric combustion parameters and mean consumption for a single vehicle. The fuels studied were: gasoline, diesel oil, anhydrous ethyl alcohol (anhydrous ethanol), and biodiesel from used frying oil and from soybean oil. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. With data provided by the Brazilian Association of Automotive Vehicle Manufacturers (ANFAVEA) for the number of vehicles produced in Brazil, the emissions of CO2 for the national fleet in 2007 were obtained per type of fuel. With data provided by the Brazilian Department of Transit (DENATRAN) concerning the number of diesel vehicles in the last five years in Brazil, the total CO2 emissions and the percentage that they would decrease in the case of use of pure biodiesel, B100, or several mixtures, B2, B5 and B20, were calculated. Estimates of CO2 emissions for a future scenario considering the mixtures B5 and B20 are also included in this article. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The groundwater pollution arising due to fuel leaks gas stations has presented a problem aggravating. Increasingly studies related to environmental problems such accidents and seek to propose some solutions for the treatment of groundwater and soils that are contaminated by gasoline. This study evaluated the use of molecular sieve TiSBA-15 as a catalyst for the reaction of removing of volatile organic compounds, particularly benzene, toluene, ethylbenzene and xylenes, known as BTEX, one of the main pollutants found in groundwater. The catalyst was synthesized by the method post-synthesis techniques and characterized by XSD, TG/DTG, adsorption/desorption of N2, XRF-EDX, for checking the incorporation of titanium and formation of the structure of the catalyst. The reaction occurred with the presence of hydrogen peroxide, H2O2, in aqueous medium to form hydroxyl radicals, which are needed in the process of removal of BTEX compounds. The catalytic reaction was carried out for 5 hours at 60 °C, pH to 3.0, and analyzes of the compounds were made in a gas chromatograph with a flame detection means photoionization static headspace (HS-GC-PID). The catalytic tests have shown the efficacy of using this type of catalyst for the removal of these volatile organic compounds, having a removal rate of 90.60% in the range where the catalyst was studied TiSBA-15(5,0)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A catalyst of great interest to the scientific community tries to unite the structure of ordered pore diameter from mesoporous materials with the properties of stability and acid activity to microporous zeolites. Thus a large number of materials was developed in the past decades, which although being reported as zeolites intrinsically they fail to comply with some relevant characteristics to zeolites, and recently were named zeolitic materials of high accessibility. Among the various synthesis strategies employed, the present research approaches the synthesis methods of crystallization of silanized protozeolitic units and the method of protozeolitic units molded around surfactant micelles, in order for get materials defined as hierarchical zeolites and micro-mesoporous hybrid materials, respectively. As goal BEA/MCM-41 hybrid catalysts with bimodal pore structure formed by nuclei of zeolite Beta and cationic surfactant cetyltrimethylammonium were developed. As also was successfully synthesized the hierarchical Beta zeolite having a secondary porosity, in addition to the typical and uniform zeolite micropores. Both catalysts were applied in reactions of catalytic cracking of high density polyethylene (HDPE), to evaluate its properties in catalytic activity, aiming at the recycling of waste plastics to obtain high value-added raw materials and fuels. The BEA/MCM-41 hybrid materials with 0 days of pre-crystallization did not show enough properties for use in catalytic cracking reactions, but they showed superior catalytic properties compared to those ordered mesoporous materials of Al-MCM-41 type. The structure of Beta zeolite with hierarchical porosity leads the accessibility of HDPE bulky molecules to active centers, due to high external area. And provides higher conversion to hydrocarbons in the gasoline range, especially olefins which have great interest in the petrochemical industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistics of environmental protection agencies show that the soil has been contaminated with problems often resulting from leaks, spills and accidents during exploration, refining, transportation and storage oil operations and its derivatives. These, gasoline noteworthy, verified by releasing, to get in touch with the groundwater, the compounds BTEX (benzene, toluene, ethylbenzene and xylenes), substances which are central nervous system depressants and causing leukemia. Among the processes used in remediation of soil and groundwater contaminated with organic pollutants, we highlight those that use hydrogen peroxide because they are characterized by the rapid generation of chemical species of high oxidation power, especially the hydroxyl radical ( OH), superoxide (O2 -) and peridroxil (HO2 ), among other reactive species that are capable of transforming or decomposing organic chemicals. The pH has a strong effect on the chemistry of hydrogen peroxide because the formation of different radicals directly depends on the pH of the medium. In this work, the materials MCM-41 and Co-MCM-41 were synthesized and used in the reaction of BTEX removal in aqueous media using H2O2. These materials were synthesized by the hydrothermal method and the techniques used to characterize were: XRD, TG/DTG, adsorption/desorption N2, TEM and X-Ray Fluorescence. The catalytic tests were for 5 h of reaction were carried out in reactors of 20 mL, which was accompanied by the decomposition of hydrogen peroxide by molecular absorption spectrophotometry in the UV-Vis, in addition to removal of organic compounds BTEX was performed as gas chromatography with detection photoionization and flame ionization and by static headspace sampler. The characterizations proved that the materials were successfully synthesized. The catalytic tests showed satisfactory results, and the reactions containing BTEX + Co-MCM-41 + H2O2 at pH = 12.0 had the highest percentages of removal for the compounds studied