854 resultados para GLUCOSE MONITORING-SYSTEM


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Governmental accountability is the requirement of government entities to be accountable to the citizenry in order to justify the raising and expenditure of public resources. The concept of service efforts and accomplishments measurement for government programs was introduced by the Governmental Accounting Standards Board (GASB) in Service Efforts and Accomplishments Reporting: Its Time Has Come (1990). This research tested the feasibility of implementing the concept for the Federal-aid highway construction program and identified factors affecting implementation with a case study of the District of Columbia. Changes in condition and performance ratings for specific highway segments in 15 projects, before and after construction expenditures, were evaluated using data provided by the Federal Highway Administration. The results of the evaluation indicated difficulty in drawing conclusions on the state program performance, as a whole. The state program reflects problems within the Federally administered program that severely limit implementation of outcome-oriented performance measurement. Major problems identified with data acquisition are: data reliability, availability, compatibility and consistency among states. Other significant factors affecting implementation are institutional barriers and political barriers. Institutional issues in the Federal Highway Administration include the lack of integration of the fiscal project specific database with the Highway Performance Monitoring System database. The Federal Highway Administration has the ability to resolve both of the data problems, however interviews with key Federal informants indicate this will not occur without external directives and changes to the Federal “stewardship” approach to program administration. ^ The findings indicate many issues must be resolved for successful implementation of outcome-oriented performance measures in the Federal-aid construction program. The issues are organizational and political in nature, however in the current environment resolution is possible. Additional research is desirable and would be useful in overcoming the obstacles to successful implementation. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays wireless communication has emerged as a tendency in industry environments. In part this interest is due to the ease of deployment and maintenance, which dispenses sophisticated designs and wired infrastructure (which in industrial environment often prohibitively expensive) besides enabling the addition of new applications when compared to their wired counterparts. Despite its high degree of applicability, an industrial wireless sensor network faces some challenges. One of the most challenging problems are its reliability, energy consumption and the environment interference. In this dissertation will discuss the problem of asset analysis in wireless industrial networks for the WirelessHART standard by implementing a monitoring system. The system allows to carry out various activities of independent asset management manufacturers, such as prediction of battery life, maintenance, reliability data, topology, and the possibility of creating new metrics from open and standardized development libraries. Through the implementation of this tool is intended to contribute to integration of wireless technologies in industrial environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a mechatronic system for monitoring water quality in rivers, lakes, dams and sea, able to perform the acquisition, processing and presentation of data via the web in real time, in order to facilitate analysis quickly and needs by interested communities. The hardware architecture and software monitoring system has been developed so that it can be generic, that is, supporting different applications. Nevertheless, as a validation of the proposed system, we built a prototype that operates embarked on an autonomous robotic sailboat, a responsible platform for collecting the data in multiple predefined points from a ground station with a planning system navigation. This final application combines the advantages of autonomy of a robotic sailboat with the need for fast and accurate monitoring of water quality, in addition to the use of an autonomous robotic sailboat unmanned facilitate the development of other research in this area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Safeguarding organizations against opportunism and severe deception in computer-mediated communication (CMC) presents a major challenge to CIOs and IT managers. New insights into linguistic cues of deception derive from the speech acts innate to CMC. Applying automated text analysis to archival email exchanges in a CMC system as part of a reward program, we assess the ability of word use (micro-level), message development (macro-level), and intertextual exchange cues (meta-level) to detect severe deception by business partners. We empirically assess the predictive ability of our framework using an ordinal multilevel regression model. Results indicate that deceivers minimize the use of referencing and self-deprecation but include more superfluous descriptions and flattery. Deceitful channel partners also over structure their arguments and rapidly mimic the linguistic style of the account manager across dyadic e-mail exchanges. Thanks to its diagnostic value, the proposed framework can support firms’ decision-making and guide compliance monitoring system development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009–2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009–2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ageing and deterioration of infrastructure is a challenge facing transport authorities. In
particular, there is a need for increased bridge monitoring in order to provide adequate
maintenance and to guarantee acceptable levels of transport safety. The Intelligent
Infrastructure group at Queens University Belfast (QUB) are working on a number of aspects
of infrastructure monitoring and this paper presents summarised results from three distinct
monitoring projects carried out by this group. Firstly the findings from a project on next
generation Bridge Weight in Motion (B-WIM) are reported, this includes full scale field testing
using fibre optic strain sensors. Secondly, results from early phase testing of a computer
vision system for bridge deflection monitoring are reported on. This research seeks to exploit
recent advances in image processing technology with a view to developing contactless
bridge monitoring approaches. Considering the logistical difficulty of installing sensors on a
‘live’ bridge, contactless monitoring has some inherent advantages over conventional
contact based sensing systems. Finally the last section of the paper presents some recent
findings on drive by bridge monitoring. In practice a drive-by monitoring system will likely
require GPS to allow the response of a given bridge to be identified; this study looks at the
feasibility of using low-cost GPS sensors for this purpose, via field trials. The three topics
outlined above cover a spectrum of SHM approaches namely, wired monitoring, contactless
monitoring and drive by monitoring

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation
dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Aims: True Colours is an online prospective mood-monitoring system developed at the University of Oxford to assist local patients and clinicians with monitoring course of illness in bipolar disorder. We report our initial experiences of using True Colours for research purposes in the Bipolar Disorder Research Network (BDRN; www.bdrn.org), a large research network of individuals with mood disorders spread throughout the UK. Methods: After initial piloting to ensure the practicality/acceptability of using True Colours within BDRN, we invited all BDRN participants (n = 7000) to participate in weekly True Colours ratings via three postal invitations sent over an 8-month period. Results: Following the three postal invitations, 915 individuals have so far expressed an interest in joining True Colours, and, of these, 662 (72.3%) have registered. 32 of those who registered for True Colours (5%) have so far asked to leave the system. Positive feedback from participants has focused around the ease of use and convenience of True Colours and potential clinical utility of the graphical representation of weekly mood scores. Conclusions: We have demonstrated that large-scale prospective mood monitoring for research purposes using a contemporary online approach is feasible. Challenges have included: (i) variation in participants’ technological ability; (ii) management of requests for clinical advice based on mood scores within a research setting; and, (iii) resources required to provide access and on-going support for participants using True Colours. We continue to expand recruitment to True Colours within BDRN, and plan to trial email invitations in the next phase of recruitment.