882 resultados para GA (Genetic Algorithm)
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.
Resumo:
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.
Resumo:
In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (I the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry`s own practice. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Over the useful life of a LAN, network downtimes will have a negative impact on organizational productivity not included in current Network Topological Design (NTD) problems. We propose a new approach to LAN topological design that includes the impact of these productivity losses into the network design, minimizing not only the CAPEX but also the expected cost of unproductiveness attributable to network downtimes over a certain period of network operation.
Resumo:
This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Genetic algorithms are commonly used to solve combinatorial optimizationproblems. The implementation evolves using genetic operators (crossover, mutation,selection, etc.). Anyway, genetic algorithms like some other methods have parameters(population size, probabilities of crossover and mutation) which need to be tune orchosen.In this paper, our project is based on an existing hybrid genetic algorithmworking on the multiprocessor scheduling problem. We propose a hybrid Fuzzy-Genetic Algorithm (FLGA) approach to solve the multiprocessor scheduling problem.The algorithm consists in adding a fuzzy logic controller to control and tunedynamically different parameters (probabilities of crossover and mutation), in anattempt to improve the algorithm performance. For this purpose, we will design afuzzy logic controller based on fuzzy rules to control the probabilities of crossoverand mutation. Compared with the Standard Genetic Algorithm (SGA), the resultsclearly demonstrate that the FLGA method performs significantly better.
Resumo:
Nowadays in the world of mass consumption there is big demand for distributioncenters of bigger size. Managing such a center is a very complex and difficult taskregarding to the different processes and factors in a usual warehouse when we want tominimize the labor costs. Most of the workers’ working time is spent with travelingbetween source and destination points which cause deadheading. Even if a worker knowsthe structure of a warehouse well and because of that he or she can find the shortest pathbetween two points, it is still not guaranteed that there won’t be long traveling timebetween the locations of two consecutive tasks. We need optimal assignments betweentasks and workers.In the scientific literature Generalized Assignment Problem (GAP) is a wellknownproblem which deals with the assignment of m workers to n tasks consideringseveral constraints. The primary purpose of my thesis project was to choose a heuristics(genetic algorithm, tabu search or ant colony optimization) to be implemented into SAPExtended Warehouse Management (SAP EWM) by with task assignment will be moreeffective between tasks and resources.After system analysis I had to realize that due different constraints and businessdemands only 1:1 assingments are allowed in SAP EWM. Because of that I had to use adifferent and simpler approach – instead of the introduced heuristics – which could gainbetter assignments during the test phase in several cases. In the thesis I described indetails what ware the most important questions and problems which emerged during theplanning of my optimized assignment method.
Resumo:
Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.
Resumo:
The context of this report and the IRIDIA laboratory are described in the preface. Evolutionary Robotics and the box-pushing task are presented in the introduction.The building of a test system supporting Evolutionary Robotics experiments is then detailed. This system is made of a robot simulator and a Genetic Algorithm. It is used to explore the possibility of evolving box-pushing behaviours. The bootstrapping problem is explained, and a novel approach for dealing with it is proposed, with results presented.Finally, ideas for extending this approach are presented in the conclusion.
Resumo:
In this paper, we propose a new method for solving large scale p-median problem instances based on real data. We compare different approaches in terms of runtime, memory footprint and quality of solutions obtained. In order to test the different methods on real data, we introduce a new benchmark for the p-median problem based on real Swedish data. Because of the size of the problem addressed, up to 1938 candidate nodes, a number of algorithms, both exact and heuristic, are considered. We also propose an improved hybrid version of a genetic algorithm called impGA. Experiments show that impGA behaves as well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.
Resumo:
Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.
Resumo:
This thesis provides three original contributions to the field of Decision Sciences. The first contribution explores the field of heuristics and biases. New variations of the Cognitive Reflection Test (CRT--a test to measure "the ability or disposition to resist reporting the response that first comes to mind"), are provided. The original CRT (S. Frederick [2005] Journal of Economic Perspectives, v. 19:4, pp.24-42) has items in which the response is immediate--and erroneous. It is shown that by merely varying the numerical parameters of the problems, large deviations in response are found. Not only the final results are affected by the proposed variations, but so is processing fluency. It seems that numbers' magnitudes serve as a cue to activate system-2 type reasoning. The second contribution explores Managerial Algorithmics Theory (M. Moldoveanu [2009] Strategic Management Journal, v. 30, pp. 737-763); an ambitious research program that states that managers display cognitive choices with a "preference towards solving problems of low computational complexity". An empirical test of this hypothesis is conducted, with results showing that this premise is not supported. A number of problems are designed with the intent of testing the predictions from managerial algorithmics against the predictions of cognitive psychology. The results demonstrate (once again) that framing effects profoundly affect choice, and (an original insight) that managers are unable to distinguish computational complexity problem classes. The third contribution explores a new approach to a computationally complex problem in marketing: the shelf space allocation problem (M-H Yang [2001] European Journal of Operational Research, v. 131, pp.107--118). A new representation for a genetic algorithm is developed, and computational experiments demonstrate its feasibility as a practical solution method. These studies lie at the interface of psychology and economics (with bounded rationality and the heuristics and biases programme), psychology, strategy, and computational complexity, and heuristics for computationally hard problems in management science.