996 resultados para Functional performing
Resumo:
We study the functional specialization whereby some countries contribute relatively more inventors vs. organizations in the production of inventions at a global scale. We propose a conceptual framework to explain this type of functional specialization, which posits the presence of feedbacks between two distinct sub-systems, each one providing inventors and organizations. We quantify the phenomenon by means of a new metric, the inventor balance, which we compute using patent data. We show that the observed imbalances, which are often conspicuous, are determined by several factors: the innovativeness of a country relative to its level of economic development, relative factor endowments, the degree of technological specialization and, last, cultural traits. We argue that the inventor balance is a useful indicator for policy makers, and its routine analysis could lead to better informed innovation policies.
Resumo:
Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.
Resumo:
ABSTRACT Objectives: Patients with failed back surgery syndrome (FBSS) and chronic neuropathic pain experience levels of health-related quality of life (HRQoL) that are considerably lower than those reported in other areas of chronic pain. The aim of this article was to quantify the extent to which reductions in (leg and back) pain and disability over time translate into improvements in generic HRQoL as measured by the EuroQoL-5D and SF-36 instruments. Methods: Using data from the multinational Prospective, Randomized, Controlled, Multicenter Study of Patients with Failed Back Surgery Syndrome trial, we explore the relationship between generic HRQoL-assessed using two instruments often used in clinical trials (i.e., the SF-36 and EuroQol-5D)-and disease-specific outcome measures (i.e., Oswestry disability index [ODI], leg and back pain visual analog scale [VAS]) in neuropathic patients with FBSS. Results: In our sample of 100 FBSS patients, generic HRQoL was moderately associated with ODI (correlation coefficient: -0.462 to -0.638) and mildly associated with leg pain VAS (correlation coefficient: -0.165 to -0.436). The multilevel regression analysis results indicate that functional ability (as measured by the ODI) is significantly associated with HRQoL, regardless of the generic HRQoL instrument used. On the other hand, changes over time in leg pain were significantly associated with changes in the EuroQoL-5D and physical component summary scores, but not with the mental component summary score. Conclusions: Reduction in leg pain and functional disability is statistically significantly associated with improvements in generic HRQoL. This is the first study to investigate the longitudinal relationship between generic and disease-specific HRQoL of neuropathic pain patients with FBSS, using multinational data.
Resumo:
OBJECTIVE: To evaluate morphological and perfusion changes in liver metastases of neuroendocrine tumours by contrast-enhanced ultrasound (CEUS) after transarterial embolisation with bead block (TAE) or trans-arterial chemoembolisation with doxorubicin-eluting beads (DEB-TACE). METHODS: In this retrospective study, seven patients underwent TAE, and ten underwent DEB-TACE using beads of the same size. At 1 day before embolisation, 2 days, 1 month and 3 months after the procedure, a destruction-replenishment study using CEUS was performed with a microbubble-enhancing contrast material on a reference tumour. Relative blood flow (rBF) and relative blood volume (rBV) were obtained from the ratio of values obtained in the tumour and in adjacent liver parenchyma. Morphological parameters such as the tumour's major diameter and the viable tumour's major diameter were also measured. A parameter combining functional and morphological data, the tumour vitality index (TVI), was studied. The Wilcoxon rank-sum test and Fisher's test were used to compare treatment groups. RESULTS: At 3 months rBF, rBV and TVI were significantly lower (P = 0.005, P = 0.04 and P = 0.03) for the group with doxorubicin. No difference in morphological parameters was found throughout the follow-up. CONCLUSIONS: One parameter, TVI, could evaluate the morphological and functional response to treatments.
Resumo:
Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.
Resumo:
Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.
Resumo:
Recent studies at high field (7Tesla) have reported small metabolite changes, in particular lactate and glutamate (below 0.3μmol/g) during visual stimulation. These studies have been limited to the visual cortex because of its high energy metabolism and good magnetic resonance spectroscopy (MRS) sensitivity using surface coil. The aim of this study was to extend functional MRS (fMRS) to investigate for the first time the metabolite changes during motor activation at 7T. Small but sustained increases in lactate (0.17μmol/g0.05μmol/g, p<0.001) and glutamate (0.17μmol/g0.09μmol/g, p<0.005) were detected during motor activation followed by a return to the baseline after the end of activation. The present study demonstrates that increases in lactate and glutamate during motor stimulation are small, but similar to those observed during visual stimulation. From the observed glutamate and lactate increase, we inferred that these metabolite changes may be a general manifestation of the increased neuronal activity. In addition, we propose that the measured metabolite concentration increases imply an increase in ΔCMRO2 that is transiently below that of ΔCMRGlc during the first 1 to 2min of the stimulation.
Resumo:
Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH2-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.
Resumo:
Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background thoriqueDes stimuli multisensoriels sont plus faciles reconnatre, peuvent amliorer l'apprentissage et sont traits plus rapidement compar des stimuli unisensoriels. Ainsi, la capacit qu'un organisme possde extraire et synthtiser avec ses diffrentes modalits sensorielles des inputs sensoriels pertinents, faonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient extraire et fusionner des stimuli pour crer une reprsentation percep- tuelle cohrente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appele "intgration multisensorielle", une notion qui provient de travaux effectus dans le colliculus suprieur chez l'animal, une structure sous-corticale possdant des neurones produisant une sortie multisensorielle diffrant de la somme des entres unisensorielles. Traditionnellement, l'intgration d'informations multisen- sorielles au niveau cortical est considre comme se produisant tardivement dans les aires associatives suprieures dans les lobes frontaux, temporaux et paritaux, suite un traitement extensif au sein de rgions unisensorielles primaires. Cependant, plusieurs dcouvertes anatomiques, lectrophysiologiques et de neuroimageries remettent en question ce postulat, suggrant l'existence d'une convergence et d'interactions multisensorielles prcoces.Les travaux prsents dans cette thse sont destins mieux comprendre les bases neuronales et les mcanismes impliqus dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linaires prcoces audio-somatosensorielles ont t observes maintes reprises chez l'homme et le singe dans des circonstances aussi varies que sous anes- thsie, avec stimulation passive, et lors de tches ncessitant un comportement (une dtection simple de stimuli, par exemple). Ainsi, le rle fonctionnel jou par ces interactions une tape du traitement de l'information si prcoce demeure une question ouverte. Il a galement t dmontr que les temps de raction en rponse des stimuli audio-somatosensoriels sont facilits par rapport leurs homologues unisensoriels indpendamment de leur position spatiale. Ce rsultat suggre que l'intgration audio- somatosensorielle se produit dans des rgions crbrales possdant des reprsentations spatiales large chelle. Cependant, des expriences qui ont exig un traitement spatial des stimuli ont produits des effets limits des conditions o les stimuli multisensoriels taient, aligns dans l'espace ou encore comme pouvant varier selon la partie de corps stimule. Il n'a pas t tabli ce jour si ces divergences pourraient tre dues aux contraintes lies la tche et/ou la ncessit d'un traitement de l'information spatiale.Hypothse et rsultats exprimentauxDans une premire tude, nous avons mis l'hypothse que les interactions audio- somatosensorielles prcoces sont pertinentes pour le comportement. En effectuant un partage des temps de raction par rapport la mdiane d'un sous-ensemble de donnes comportementales et lectroencpha- lographiques, nous avons constat que les interactions multisensorielles qui se produisent des latences prcoces (entre 40-83ms) sont spcifique aux temps de raction rapides indiquant une corrlation directe entre ces interactions neuronales prcoces et le comportement.Dans une deuxime tude, nous avons mis l'hypothse que si l'information spatiale devient perti-nente pour la tche, elle pourrait exercer une influence sur des mesures comportementales de l'intgration audio-somatosensorielles. Dans deux expriences psychophysiques, nous montrons que mme si les participants prtent attention l'information spatiale, une facilitation de la dtection se produit et ce toujours indpendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifie l'aide d'un index de sensibilit (d') est altre suite aux essais multisensoriels en gnral et de manire plus significative pour les essais multisensoriels non-aligns dans l'espace.Dans une troisime tude, nous avons mis l'hypothse que des amliorations comportementales pourraient diffrer selon la partie du corps qui est stimule (la main vs. la nuque). Des rsultats prliminaires suggrent une dissociation possible entre une facilitation comportementale et les potentiels voqus. Les temps de ractions taient influencs par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels taient sur la nuque alors que les potentiels voqus taient moduls par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thse apporte des lments nouveaux concernant le rle fonctionnel jou par les interactions multisensorielles prcoces de bas niveau. En combinant la psychophysique et la neuroimagerie lectrique, nous dmontrons la pertinence comportementale des ces interactions dans le systme humain normal. Par ailleurs, nous montrons que ces interactions prcoces sont hermtiques aux influences dites top-down sur le traitement spatial suggrant leur occurrence dans des rgions crbrales ayant accs des reprsentations spatiales de grande chelle. Nous soulignons enfin des interactions spcifiques entre l'espace auditif et la stimulation somatosensorielle sur diffrentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mcanismes impliqus dans l'intgration multisensorielle dans le systme normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau dficient pourrait bnficier d'une rhabilitation avec la stimulation multisensorielle.
Resumo:
Background: Previous studies reported an increase of mean platelet volume (MPV) in patients with acute ischemic stroke. However, its correlation with stroke severity has not been investigated. Moreover, studies on the association of MPV with functional outcome yielded inconsistent results. Methods: We included all consecutive ischemic stroke patients admitted to CHUV (Centre Hospitalier Universitaire Vaudois) Neurology Service within 24 h after stroke onset who had MPV measured on admission. The association of MPV with stroke severity (NIHSS score at admission and at 24 h) and outcome (Rankin Scale score at 3 and 12 months) was analyzed in univariate analysis. The chi(2) test was performed to compare the frequency of minor strokes (NIHSS score </=4) and good functional outcome (Rankin Scale score </=2) across MPV quartiles. The ANOVA test was used to compare MPV between stroke subtypes according to the TOAST classification. Student's two-tailed unpaired t test was performed to compare MPV between lacunar and nonlacunar strokes. MPV was generated at admission by the Sysmex XE-2100 automated cell counter (Sysmex Corporation, Kobe, Japan) from EDTA blood samples. Results: There was no significant difference in the frequency of minor strokes (p = 0.46) and good functional outcome (p = 0.06) across MPV quartiles. MPV was not associated with stroke severity or outcome in univariate analysis. There was no significant difference in MPV between stroke subtypes according to the TOAST classification (p = 0.173) or between lacunar and nonlacunar strokes (10.50 +/- 0.91 vs. 10.40 +/- 0.81 fl, p = 0.322). Conclusions: MPV, assessed within 24 h after ischemic stroke onset, is not associated with stroke severity or functional outcome.
Resumo:
In cerebral ischemic preconditioning (IPC), a first sublethal ischemia increases the resistance of neurons to a subsequent severe ischemia. Despite numerous studies, the mechanisms are not yet fully understood. Our goal is to develop an in vitro model of IPC on hippocampal organotypic slice cultures. Instead of anoxia, we chose to apply varying degrees of hypoxia that allows us various levels of insult graded from mild to severe. Cultures are exposed to combined oxygen and glucose deprivation (OGD) of varying intensities, ranging from mild to severe, assessing both the electrical activity and cell death. IPC was accomplished by exposure to the mildest ischemia condition (10% of O2 for 15 min) 24 h before the severe deprivation (5% of O2 for 30 min). Interestingly, IPC not only prevented delayed ischemic cell death 6 days after insult but also the transient loss of evoked potential response. The major interest and advantage of this system over both the acute slice preparation and primary cell cultures is the ability to simultaneously measure the delayed neuronal damage and neuronal function.
Resumo:
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Resumo:
Familial hemiplegic migraine type 2, an autosomal dominant form of migraine with aura, has been associated with four distinct mutations in the alpha2-subunit of the Na+,K+-ATPase. We have introduced these mutations in the alpha2-subunit of the human Na+,K+-ATPase and the corresponding mutations in the Bufo marinus alpha1-subunit and studied these mutants by expression in Xenopus oocyte. Metabolic labeling studies showed that the mutants were synthesized and associated with the beta-subunit, except for the alpha2HW887R mutant, which was poorly synthesized, and the alpha1BW890R, which was partially retained in the endoplasmic reticulum. [3H]ouabain binding showed the presence of the alpha2HR689Q and alpha2HM731T at the membrane, whereas the alpha2HL764P and alpha2HW887R could not be detected. Functional studies with the mutants of the B. marinus Na+,K+-ATPase showed a reduced or abolished electrogenic activity and a low K+ affinity for the alpha1BW890R mutant. Through different mechanisms, all these mutations result in a strong decrease of the functional expression of the Na+,K+-pump. The decreased activity in alpha2 isoform of the Na+,K+-pump expressed in astrocytes seems an essential component of hemiplegic migraine pathogenesis and may be responsible for the cortical spreading depression, which is one of the first events in migraine attacks.