993 resultados para Frequency ratio tuning
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.
Resumo:
The pseudoternary section FeO-ZnO-(CaO + SiO2) with a CaO/SiO2 weight ratio of 0.71 in equilibrium with metallic iron has been experimentally investigated in the temperature range from 1000 degreesC to 1300 degreesC (1273 to 1573 K). The liquidus surface in this pseudoternary. section has been determined in the composition range of 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2)The system contains primary-phase fields of wustite (FexZn1-xO1+y), zincite (ZnzFe1-zO), fayalite (FewZn2-wSiO4), melilite (Ca2ZnuFe1-uSi2O7), and pseudowollastonite (CaSiO3). The phase equilibria involving the liquid phase and the solid solutions have also been measured.
Resumo:
The isotope composition of Ph is difficult to determine accurately due to the lack of a stable normalisation ratio. Double and triple-spike addition techniques provide one solution and presently yield the most accurate measurements. A number of recent studies have claimed that improved accuracy and precision could also be achieved by multi-collector ICP-MS (MC-ICP-MS) Pb-isotope analysis using the addition of Tl of known isotope composition to Pb samples. In this paper, we verify whether the known isotope composition of Tl can be used for correction of mass discrimination of Pb with an extensive dataset for the NIST standard SRM 981, comparison of MC-ICP-MS with TIMS data, and comparison with three isochrons from different geological environments. When all our NIST SRM 981 data are normalised with one constant Tl-205/Tl-203 of 2.38869, the following averages and reproducibilities were obtained: Pb-207/Pb-206=0.91461+/-18; Pb-208/Ph-206 = 2.1674+/-7; and (PbPh)-Pb-206-Ph-204 = 16.941+/-6. These two sigma standard deviations of the mean correspond to 149, 330, and 374 ppm, respectively. Accuracies relative to triple-spike values are 149, 157, and 52 ppm, respectively, and thus well within uncertainties. The largest component of the uncertainties stems from the Ph data alone and is not caused by differential mass discrimination behaviour of Ph and Tl. In routine operation, variation of sample introduction memory and production of isobaric molecular interferences in the spectrometer's collision cell currently appear to be the ultimate limitation to better reproducibility. Comparative study of five different datasets from actual samples (bullets, international rock standards, carbonates, metamorphic minerals, and sulphide minerals) demonstrates that in most cases geological scatter of the sample exceeds the achieved analytical reproducibility. We observe good agreement between TIMS and MC-ICP-MS data for international rock standards but find that such comparison does not constitute the ultimate. test for the validity of the MC-ICP-MS technique. Two attempted isochrons resulted in geological scatter (in one case small) in excess of analytical reproducibility. However, in one case (leached Great Dyke sulphides) we obtained a true isochron (MSWD = 0.63) age of 2578.3 +/- 0.9 Ma, which is identical to and more precise than a recently published U-Pb zircon age (2579 3 Ma) for a Great Dyke websterite [Earth Planet. Sci. Lett. 180 (2000) 1-12]. Reproducibility of this age by means of an isochron we regard as a robust test of accuracy over a wide dynamic range. We show that reliable and accurate Pb-isotope data can be obtained by careful operation of second-generation MC-ICP magnetic sector mass spectrometers. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A detailed study of the Goniopora reef profile at Dengloujiao, Xuwen County, Leizhou Peninsula, the northern coast of the South China Sea suggests that a series of high-frequency, large-amplitude and abrupt cold events occurred during the Holocene Hypsithermal, an unusual phenomenon termed Leizhou Events in this paper. This period (corresponding to C-14 age of 6.2 -6.7 kaBP or calendar age of 6.7-7.2 kaBP), when the climatic conditions were ideal for coral. reefs to develop, can be divided into at least nine stages. Each stage (or called a climate optimum), lasting about 20 to 50 a, was terminated by an abrupt cold nap and (or) a sea-level lowering event in winter, leading to widespread emergence and death of the Goniopora corals, and growth discontinuities on the coral surface. Such a cyclic process resulted in the creation of a > 4m thick Goniopora reef flat. During this period, the crust subsided periodically but the sea level was rising. The reef profile provides valuable archives for the study of decadal-scale mid-Holocene climatic oscillations in the tropical area of South China. Our results provide new evidence for high-frequency climate instability in the Holocene Hypsithermal, and challenge the traditional understanding of Holocene climate.
Resumo:
Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The age of sex reversal of the venus tusk fish Choerodon venustus, caught by line fishing at various locations on the southern Great Barrier Reef, indicated that C. venustus is capable of modifying its life cycle in response to increased mortality. The evidence suggests Masthead Reef fish, which experience the highest mortality, underwent sex reversal at a smaller size and younger age than at the other sites. The largest female fish, sexually transitional fish and males were smaller at Masthead Reef than at the Swains Reefs or One Tree Reef at Masthead Reef. There was also considerable overlap in the size of males and females within the exploited populations indicating that sex reversal is not initiated at a particular length but may have a social cause. The sex ratio of fish was essentially the same for fish fully susceptible to line fishing in the Swains and Masthead samples. Circumstantial evidence suggested that the absence of large males in a population may initiate sex reversal, indicating the maintenance of a constant sex ratio may have a social basis. (C) 2002 The Fisheries Society of the British Isles.
Resumo:
Figures on the relative frequency of synthetic and composite future forms in Ouest-France are presented and compared with those of earlier studies on the passé simple and passé composé. The synthetic future is found to be dominant. Possible formal explanations for distribution are found to be inconclusive. Distribution across different text-types is found to be more promising, since contrastive functions of the two forms can be identified in texts where they co-occur. The composite future typically reports new proposals or plans as current news, while the synthetic future outlines details that will be realised at the time of implementation. Both functions are important in dailies, but current news is more often expressed in the present tense at the expense of the composite future.
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.
Resumo:
Experimental studies on phase equilibria and liquidus in the multicomponent system PbO-ZnO-CaO-SiO2-FeO-Fe2O3 in air have been conducted over the temperature range between 1323 K (1050 degreesC) and 1623 K (1350 degreesC) to characterize the phase relations of the complex slag systems encountered in lead and zinc blast furnace sinters. The liquidus in two pseudoternary sections ZnO-Fe2O3-(PbO + CaO + SiO2) with the CaO/SiO2 weight ratio of 0.933 and PbO/(CaO + SiO2) weight ratios of 2.0 and 3.2 have been constructed.
Resumo:
A cross between two different races (race 7 x race 25) of the soybean root and stem rot pathogen Phytophthora sojae was analyzed to characterize the genomic region flanking two cosegregating avirulence genes, Anur4 and Anur6. Both genes cosegregated in the ratio of 82:17 (avirulent:virulent) in an F-2 population, suggestive of a single locus controlling both phenotypes. A chromosome walk was commenced from RAPD marker OPE7.1C, 2.0 cM distant from the Anur4/6 locus. Three overlapping cosmids were isolated which included genetic markers that flank the Anur4/6 locus. The chromosome walk spanned a physical distance of 67 kb which represented a genetic map distance of 22.3cM, an average recombination frequency of 3.0kb/cM and 11.7-fold greater than the predicted average recombination frequency of 35.3 kb/cM for the entire P. sojae genome. Six genes (cDNA clones) expressed from the Anur4/6 genomic region encompassed by the cosmid contig were identified. Single nucleotide polymorphisms and restriction fragment length polymorphisms showed these six genes were closely linked to the Anur4/6 locus. Physical mapping of the cDNA clones within the cosmid contig made it possible to deduce the precise linkage order of the cDNAs. None of the six cDNA clones appear to be candidates for Anur4/6. We conclude that two of these cDNA clones flank a physical region of approximately 24 kb and 4.3 cM that appears to include the Anur4/6 locus. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
To evaluate the timing of mutations in BRAF (v-raf murine sarcoma viral oncogene homolog B1) during melanocytic neoplasia, we carried out mutation analysis on microdissected melanoma and nevi samples. We observed mutations resulting in the V599E amino-acid substitution in 41 of 60 (68%) melanoma metastases, 4 of 5 (80%) primary melanomas and, unexpectedly, in 63 of 77 (82%) nevi. These data suggest that mutational activation of the RAS/RAF/MAPK pathway in nevi is a critical step in the initiation of melanocytic neoplasia but alone is insufficient for melanoma tumorigenesis.
Resumo:
The radio frequency (RF) plasma-modified surfaces of kaolinite were investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and deuteration techniques to determine the nature of RF plasma-induced surface functional groups, the altered sites in the lattice, and interaction mechanism between RF plasma and the surface of the kaolinite. It has been concluded that the RF plasma-induced infrared (IR) vibration absorption bands at 2805, 3010, and 3100 cm(-1) are attributable to the stretching vibration of hydrogen-bonded hydroxyl groups, and the band at 1407 cm(-1) is attributable to the bending vibration of (HO-)Al-O or (HO-)Si-O groupings with hydrogen-bonded hydroxyl groups. Structural alteration occurred on both the surface and subsurface region of the kaolinite during RF plasma treatment. Further structural alteration or adjustment was also observed on well-modified and well-deuterated kaolinite. There are two types of OD bands visible in the DRIFT spectra of this kaolinite, one type which decreased rapidly as a function of time in moist air, and the other which remained unchanged during the measurement. Furthermore, the appearance of broad IR bands at 3500-3100 cm(-1) as a result of deuteration is evidence of structural disturbance by RF plasma treatment lattice deuteration. An RF plasma-induced hydrogen bonding model on the surface of the kaolinite is proposed.