935 resultados para Forecast combination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although adult Rumex obtusifolius are problematic weeds, their seedlings are poor competitors against Lolium perenne, particularly in established swards. We investigated the possibility of using this weakness to augment control of R. obtusifolius seedlings with combinations of Gastrophysa viridula (Coleoptera: Chrysomelidae) and the rust fungus Uromyces rumicis. Rumex obtusifolius seedlings were grown in competition with L. perenne sown at different rates and times after R. obtusifolius: they competed successfully with L. perenne when sown 21 days before the grass. Sowing both species at the same time resulted in a dominant grass sward, with R. obtusifolius becoming dominant when sown 42 days prior to L. perenne. Grass sowing rate had no effect on R. obtusifolius growth or biomass. A second experiment investigated how competition from L. perenne sown 21 days after R. obtusifolius combined with damage from G. viridula and/or U. rumicis (applied at either the 3-4- or 10-13-leaf stage, or at both stages) affected the growth and final biomass of R. obtusifolius. Beetle grazing at the latter leaf stage was the only treatment that reduced R. obtusifolius biomass, although rust infection at the earlier application led to an increase in shoot and root weight. The results are discussed in terms of the potential for use of these agents in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)(1) and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.: R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data. 2000, 29, 167) 2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a. value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100,. 19398)4 of the bond dissociation energy, D-298(BrO-NO2) = 118 kJ mol(-1), corresponding to Delta H-0(circle) = 114.3 kJ mol(-1) at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing Delta H-0(circle) to an unrealistically high value (149.3 kJ mol(-1)) or by increasing , the average energy transferred in a downward collision, to an unusually large value (> 5000 cm(-1)). The discrepancy could also be reduced by making all overall rotations fully active. The system was relatively insensitive to changing the moments of inertia in the transition state to increase the centrifugal effect. The possibility of involvement of BrOONO was tested and cannot account for the difficulties of fitting the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log(10) cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log(10) cycles of E. coli at pH 7.0 and almost 3 log(10) cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To find the range of pressure required for effective high-pressure inactivation of bacterial spores and to investigate the role of alpha/beta-type small, acid-soluble proteins (SASP) in spores under pressure treatment, mild heat was combined with pressure (room temperature to 65 degrees C and 100 to 500 MPa) and applied to wild-type and SASP-alpha(-/)beta(-) Bacillus subtilis spores. On the one hand, more than 4 log units of wild-type spores were reduced after pressurization at 100 to 500 MPa and 65 degrees C, On the other hand, the number of surviving mutant spores decreased by 2 log units at 100 MPa and by more than 5 log units at 500 MPa. At 500 MPa and 65 degrees C, both wild-type and mutant spore survivor counts were reduced by 5 log units. Interestingly, pressures of 100, 200, and 300 MPa at 65 degrees C inactivated wild-type SASP-alpha(+)/beta(+) spores more than mutant SASP-alpha(-)/beta(-) spores, and this was attributed to less pressure-induced germination in SASP-alpha(-)/beta(-) spores than in wild-type SASP-alpha(+)/beta(+) spores. However, there was no difference in the pressure resistance between SASP-alpha(+)/beta(+) and SASP-alpha(-)/beta(-) spores at 100 MPa and ambient temperature (approximately 22 degrees C) for 30 min. A combination of high pressure and high temperature is very effective for inducing spore germination, and then inactivation of the germinated spore occurs because of the heat treatment. This study showed that alpha/beta-type SASP play a role in spore inactivation by increasing spore germination under 100 to 300 MPa at high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convex combination is a mathematic approach to keep the advantages of its component algorithms for better performance. In this paper, we employ convex combination in the blind equalization to achieve better blind equalization. By combining the blind constant modulus algorithm (CMA) and decision directed algorithm, the combinative blind equalization (CBE) algorithm can retain the advantages from both. Furthermore, the convergence speed of the CBE algorithm is faster than both of its component equalizers. Simulation results are also given to verify the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of polymers with stimuli responsive physical properties is a rapidly expanding area of research. At the forefront of the field are self-healing polymers, which, when fractured can regain the mechanical properties of the material either autonomically, or in response to a stimulus. It has long been known that it is possible to promote healing in conventional thermoplastics by heating the fracture zone above the Tg of the polymer under pressure. This process requires reptation and subsequent re-entanglement of macromolecules across the fracture void, which serves to bridge, and ‘heal’ the crack. The timescale for this mechanism is highly dependent on the molecular weight of the polymer being studied. This process is in contrast to that required to affect healing in supramolecular polymers such as the plasticised, hydrogen bonded elastomer reported by Leibler et al. The disparity in bond energies between the non-covalent and covalent bonds within supramolecular polymers results in fractures propagating through scission of the comparatively weak supramolecular interactions, rather than through breaking the stronger, covalent bonds. Thus, during the healing process the macromolecules surrounding the fracture site only need sufficient energy to re-engage their supramolecular interactions in order to regenerate the strength of the pristine material. Herein we describe the design, synthesis and optimization of a new class of supramolecular polymer blends that harness the reversible nature of pi-pi stacking and hydrogen bonding interactions to produce self-supporting films with facile healable characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea that supercomputers are an important part of making forecasts of the weather and climate is well known amongst the general population. However, the details of their use are somewhat mysterious. A concept used to illustrate many undergraduate numerical weather prediction courses is the idea of a giant 'forecast factory,' conceived by Lewis Fry Richardson in 1922. In this article, a way of using the same idea to communicate key ideas in numerical weather prediction to the general public is outlined and tested amongst children from local schools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a targeted observations case, the dependence of the size of the forecast impact on the targeted dropsonde observation error in the data assimilation is assessed. The targeted observations were made in the lee of Greenland; the dependence of the impact on the proximity of the observations to the Greenland coast is also investigated. Experiments were conducted using the Met Office Unified Model (MetUM), over a limited-area domain at 24-km grid spacing, with a four-dimensional variational data assimilation (4D-Var) scheme. Reducing the operational dropsonde observation errors by one-half increases the maximum forecast improvement from 5% to 7%–10%, measured in terms of total energy. However, the largest impact is seen by replacing two dropsondes on the Greenland coast with two farther from the steep orography; this increases the maximum forecast improvement from 5% to 18% for an 18-h forecast (using operational observation errors). Forecast degradation caused by two dropsonde observations on the Greenland coast is shown to arise from spreading of data by the background errors up the steep slope of Greenland. Removing boundary layer data from these dropsondes reduces the forecast degradation, but it is only a partial solution to this problem. Although only from one case study, these results suggest that observations positioned within a correlation length scale of steep orography may degrade the forecast through the anomalous upslope spreading of analysis increments along terrain-following model levels.