876 resultados para Force plate
Resumo:
The atomic force microscope is not only a very convenient tool for studying the topography of different samples, but it can also be used to measure specific binding forces between molecules. For this purpose, one type of molecule is attached to the tip and the other one to the substrate. Approaching the tip to the substrate allows the molecules to bind together. Retracting the tip breaks the newly formed bond. The rupture of a specific bond appears in the force-distance curves as a spike from which the binding force can be deduced. In this article we present an algorithm to automatically process force-distance curves in order to obtain bond strength histograms. The algorithm is based on a fuzzy logic approach that permits an evaluation of "quality" for every event and makes the detection procedure much faster compared to a manual selection. In this article, the software has been applied to measure the binding strength between tubuline and microtubuline associated proteins.
Resumo:
A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependency on the choice of joint coordinates. The definition of moment-arms, and the presented construction method, apply to musculoskeletal models in which the bones are modelled as rigid bodies, the joints are modelled as ideal mechanical joints and the muscles are modelled as massless, frictionless cables wrapping over the bony protrusions, approximated using geometric surfaces. In this context, the definition is independent of any coordinate choice. It is then used to solve a muscle-force estimation problem for a simple 2D conceptual model and compared with an incorrect application of the tendon excursion method. The relative errors between the two solutions vary between 0% and 100%.
Resumo:
[Acte. 1755-01-13. Paris]
Resumo:
Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 μL, e.g., from children and mice).
Resumo:
New plate-tectonic reconstructions of the Gondwana margin suggest that the location of Gondwana-derived terranes should not only be guided by the models, but should also consider the possible detrital input from some Asian blocks (Hunia), supposed to have been located along the Cambrian Gondwana margin, and accreted in the Silurian to the North-Chinese block. Consequently, the Gondwana margin has to be subdivided into a more western domain, where the future Avalonian blocks will be separated from Gondwana by the opening Rheic Ocean, whereas in its eastern continuation, hosting the future basement areas of Central Europe, different periods of crustal extension should be distinguished. Instead of applying a rather cylindrical model, it is supposed that crustal extension follows a much more complex pattern, where local back-arcs or intra-continental rifts are involved. Guided by the age data of magmatic rocks and the pattern of subsidence curves, the following extensional events can be distinguished: During the early to middle Cambrian, a back-arc setting guided the evolution at the Gondwana margin. Contemporaneous intra-continental rift basins developed at other places related to a general post-PanAfrican extensional phase affecting Africa Upper Cambrian formation of oceanic crust is manifested in the Chamrousse area, and may have lateral cryptic relics preserved in other places. This is regarded as the oceanisation of some marginal basins in a context of back-arc rifting. These basins were closed in a mid-Ordovician tectonic phase, related to the subduction of buoyant material (mid-ocean ridge?) Since the Early Ordovician, a new phase of extension is observed, accompanied by a large-scale volcanic activity, erosion of the rift shoulders generated detritus (Armorican Quartzite) and the rift basins collected detrital zircons from a wide hinterland. This phase heralded the opening of Palaeotethys, but it failed due to the Silurian collision (Eo-Variscan phase) of an intra-oceanic arc with the Gondwana margin. During this time period, at the eastern wing of the Gondwana margin begins the drift of the future Hunia microcontinents, through the opening of an eastern prolongation of the already existing Rheic Ocean. The passive margin of the remaining Gondwana was composed of the Galatian superterranes, constituents of the future Variscan basement areas. Remaining under the influence of crustal extension, they will start their drift to Laurussia since the earliest Devonian during the opening of the Palaeotethys Ocean. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Monthly Labor Force Data report produced by the Iowa Workforce Development.
Resumo:
The atomic force microscope is a convenient tool to probe living samples at the nanometric scale. Among its numerous capabilities, the instrument can be operated as a nano-indenter to gather information about the mechanical properties of the sample. In this operating mode, the deformation of the cantilever is displayed as a function of the indentation depth of the tip into the sample. Fitting this curve with different theoretical models permits us to estimate the Young's modulus of the sample at the indentation spot. We describe what to our knowledge is a new technique to process these curves to distinguish structures of different stiffness buried into the bulk of the sample. The working principle of this new imaging technique has been verified by finite element models and successfully applied to living cells.
Resumo:
Monthly Labor Force Data report produced by the Iowa Workforce Development.
Resumo:
The aim of this article is to estimate the impact of various factors related to role conflict theory and preference theory on the reduction of women's labour force participation after their transition to parenthood. Objective and subjective dimensions of women's labour force participation are assessed. The empirical test is based on a survey of couples with children in Switzerland. Results show that compared to structural factors associated with role conflict reduction, preferences have little impact on mothers' labour force participation, but explain a good deal of their frustration if the factual situation does not correspond to their wishes. Structural factors, such as occupation, economic resources, childcare, and an urban environment, support mothers' labour force participation, whereas active networks and a home centred lifestyle preference help them to cope with frustrations.
Resumo:
Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB¿/¿ mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA¿/¿ MEFs, but not FlnB¿/¿ MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.
Resumo:
Anticoagulants are a mainstay of cardiovascular therapy, and parenteral anticoagulants have widespread use in cardiology, especially in acute situations. Parenteral anticoagulants include unfractionated heparin, low-molecular-weight heparins, the synthetic pentasaccharides fondaparinux, idraparinux and idrabiotaparinux, and parenteral direct thrombin inhibitors. The several shortcomings of unfractionated heparin and of low-molecular-weight heparins have prompted the development of the other newer agents. Here we review the mechanisms of action, pharmacological properties and side effects of parenteral anticoagulants used in the management of coronary heart disease treated with or without percutaneous coronary interventions, cardioversion for atrial fibrillation, and prosthetic heart valves and valve repair. Using an evidence-based approach, we describe the results of completed clinical trials, highlight ongoing research with currently available agents, and recommend therapeutic options for specific heart diseases.
Resumo:
Monthly Labor Force Data report produced by the Iowa Workforce Development.
Resumo:
This article presents a modification of intraoperative external fixation for mandibular reconstruction with free tissue flaps. This technique is indicated when preregistration of the reconstruction plate is not possible due to transmandibular tumor extension. Once standard external fixation has been carried out and prior to segmental mandibulectomy, additional pins are fixed to the connecting rod that delineate the mandibular contour in three-dimensional (3D) space. Following mandibulectomy, these pins allow accurate contouring of the reconstruction plate and improved restoration of mandibular contour, projection, and dental occlusion. A step-by-step description of the technique using models and intraoperative photos is presented. This method of mandibular reconstruction is a simple and time-effective alternative to intraoperative computer navigation and 3D modeling in select cases of oral carcinoma where tumor infiltration of the outer mandibular cortex precludes prebending of the reconstruction plates.
Resumo:
Monthly Labor Force Data report produced by the Iowa Workforce Development.