932 resultados para Flow injection analysis.
Resumo:
Aquarium air pumps are proposed and evaluated as pneumatic liquid propulsion devices for flow injection and continuos flow analysis (FIA and CFA) systems. This kind of pump is widely available at a very low cost and it can sustain a pressure around of 4 psi (0.28 bar) indefinitely. By applying this air pressure onto a solution contained in a reservoir flask, it is possible to reach flow rates of up to 12.5 mL min-1 for circuits comprising reactors, made from 0.8 i.d. tubing with a length of 100 cm. The precise adjustment of flow rate below the maximum one can be made with a simplified needle valve or inserting in series a short length of capillary tube. The absence of flow pulsation is a definite advantage in comparison with peristaltic pumps, especially when amperometric detection is elected, as confirmed experimentally in FIA and CF applications.
Resumo:
A digital multimeter (~U$ 240.00 on the national market) connected to a microcomputer by a RS-232 serial interface is proposed for data acquisition in equipment with analog output. Data are measured at the rate of 2 points per second and stored in text files by the software that accompanies the device, running in a Windows environment. The performance of the multimeter was verified by monitoring the transient signals generated in flow injection systems associated with fluorimetric, spectrophotometric and flame photometric detection. In addition, the performance of the proposed device was similar to that attained by employing an interface card with a 12-bit analog-to-digital converter for acquisition of the signals generated by a capillary electrophoresis equipment with oscillometric detection.
Resumo:
An experiment is proposed to introduce some fundamentals of flow analysis, chemiluminescence and kinetic monitoring of enzymatic reactions in undergraduate courses. Chemiluminescence detection is performed with a simple spectrophotometer equipped with a lab-made spiral flow cell constructed from a polyethylene tube. The hydrogen peroxide produced by the glucose oxidation in the presence of glucose oxidase is continuously monitored by the reaction with luminol in alkaline media in a flow injection system. The exercise allows also the discussion of important analytical features and the comparison with different optical methods of analysis.
Resumo:
Immunoassay techniques provide simple, powerful and inexpensive methods for analysis of environmental contaminants. However, the acceptance of immunoassays is dependent on the clear demonstration of quality and validity compared to more traditional techniques. In this review, primarily, the understanding and the fundamentals of immunoassay methods are given in order to make good use of immunoassays, especially of EIA tests. Special attention is given to the concepts related to the enzyme-linked immunosorbent assay (ELISA) formats, such as inhibition concentration at 50% (IC50), detection limit (LOD), cross-reactivity (CR %). It is also explained why some immunoassays are quantitative methods whereas others can only be used as screening methods. A list of main commercial kits for detection of priority pollutants is given in order to help analysts. Others formats, such as flow-injection immunoassay analysis (FIIA), immunoassay chromatography and immunosensors are also cited.
Resumo:
The year of 2010 marks the 20th anniversary of the development of Sequential Injection Analysis (SIA) by Ruzicka and Marshall. Considered the second generation of the flow injection methods, this article briefly describes the history, the basic principles of the technique and reviews all papers developed by Brazilian scientists aiming the divulgation of this automation technique in Analytical Chemistry.
Resumo:
This study optimized and validated a method to perform chemical speciation of inorganic arsenic in water samples collected under the Monitoring Program of the Port of Rio Grande-RS in July and October 2010 from the Laguna dos Patos Estuary (RS, Brazil). The flow injection hydride generation atomic absorption spectrometry technique was employed, allowing quantification of As3+ and As5+ present in estuarine water samples. Data interpretation for results generated using the improved method for analyzing water samples collected from Laguna dos Patos Estuary was done by main components analysis.
Resumo:
Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) using the fluorescent probes Calcein acetoxy methyl ester (Calcein AM), carboxyfluorescein diacetate (cFDA), and propidium iodide (PI) in combination with flow cytometry was evaluated. Heat-treated and viable (non-treated) Cmm cells labeled with Calcein AM, cFDA, PI, or combinations of Calcein AM and cFDA with PI, could be distinguished based on their fluorescence intensity in flow cytometry analysis. Non-treated cells showed relatively high green fluorescence levels due to staining with either Calcein AM or cFDA, whereas damaged cells (heat-treated) showed high red fluorescence levels due to staining with PI. Flow cytometry also allowed a rapid quantification of viable Cmm cells labeled with Calcein AM or cFDA and heat-treated cells labeled with PI. Therefore, the application of flow cytometry in combination with fluorescent probes appears to be a promising technique for assessing viability of Cmm cells when cells are labeled with Calcein AM or the combination of Calcein AM with PI.
Resumo:
Solid phase extraction (SPE) is a powerful technique for preconcentration/removal or separation of trace and ultra trace amounts of toxic and nutrient elements. SPE effectively simplifies the labour intensive sample preparation, increase its reliability and eliminate the clean up step by using more selective extraction procedures. The synthesis of sorbents with a simplified procedure and diminution of the risks of errors shows the interest in the areas of environmental monitoring, geochemical exploration, food, agricultural, pharmaceutical, biochemical industry and high purity metal designing, etc. There is no universal SPE method because the sample pretreatment depends strongly on the analytical demand. But there is always an increasing demand for more sensitive, selective, rapid and reliable analytical procedures. Among the various materials, chelate modified naphthalene, activated carbon and chelate functionalized highly cross linked polymers are most important. In the biological and environmental field, large numbers of samples are to be analysed within a short span of time. Hence, online flow injection methods are preferred as they allow extraction, separation, identification and quantification of many numbers of analytes. The flow injection online preconcentration flame AAS procedure developed allows the determination of as low as 0.1 µg/l of nickel in soil and cobalt in human hair samples. The developed procedure is precise and rapid and allows the analysis of 30 samples per hour with a loading time of 60 s. The online FI manifold used in the present study permits high sampling, loading rates and thus resulting in higher preconcentration/enrichment factors of -725 and 600 for cobalt and nickel respectively with a 1 min preconcentration time compared to conventional FAAS signal. These enrichment factors are far superior to hitherto developed on line preconcentration procedures for inorganics. The instrumentation adopted in the present study allows much simpler equipment and low maintenance costs compared to costlier ICP-AES or ICP-MS instruments.
Resumo:
Coupling a liquid core waveguide cell to a sequential injection chromatograph improved the detection limits for determination of triazine herbicides without compromising peak resolution. Separation of simazine, atrazine, and propazine was achieved in water samples by a 25mm long C18 monolithic column. Detection was made at 238nm using a type II LCW (silica capillary coated with Teflon (R) AF2400) cell with 100cm of optical path length. Detection limits for simazine, atrazine, and propazine were 2.3, 1.9, and 4.5 mu g L-1, respectively. Reduced analysis time and low solvent consumption are other remarkable features of the proposed method.
Resumo:
A biomimetic sensor is proposed as a promising new analytical method for determination of captopril in different classes of samples. The sensor was prepared by modifying a carbon paste electrode with iron (II) phthalocyanine bis(pyridine) [FePe(dipy)] complex. Amperometric measurements in a batch analytical mode were first carried out in order to optimize the sensor response. An applied potential lower than 0.2 V vs Ag vertical bar AgCl in 0.1 mol L(-1) of TRIS buffer at pH 8.0 provided the best response, with a linear range of 2.5 x 10(-5) to 1.7 x 10(-4) mol L(-1). A detailed investigation of the selectivity of the sensor, employing seventeen other drugs, was also performed. Recovery studies were carried out using biological and environment samples in order to evaluate the sensor`s potential for use with these sample classes. Finally, the performance of the biomimetic sensor was optimized in a flow injection (FIA) system using a wall jet electrochemical cell. Under optimized flow conditions, a broad linear response range, from 5.0 x 10(-4) to 2.5 x 10(-2) mol L(-1), was obtained for captopril, with a sensitivity of 210 +/- 1 mu A L mol(-1).
Resumo:
In Brazil and around the world, oil companies are looking for, and expected development of new technologies and processes that can increase the oil recovery factor in mature reservoirs, in a simple and inexpensive way. So, the latest research has developed a new process called Gas Assisted Gravity Drainage (GAGD) which was classified as a gas injection IOR. The process, which is undergoing pilot testing in the field, is being extensively studied through physical scale models and core-floods laboratory, due to high oil recoveries in relation to other gas injection IOR. This process consists of injecting gas at the top of a reservoir through horizontal or vertical injector wells and displacing the oil, taking advantage of natural gravity segregation of fluids, to a horizontal producer well placed at the bottom of the reservoir. To study this process it was modeled a homogeneous reservoir and a model of multi-component fluid with characteristics similar to light oil Brazilian fields through a compositional simulator, to optimize the operational parameters. The model of the process was simulated in GEM (CMG, 2009.10). The operational parameters studied were the gas injection rate, the type of gas injection, the location of the injector and production well. We also studied the presence of water drive in the process. The results showed that the maximum vertical spacing between the two wells, caused the maximum recovery of oil in GAGD. Also, it was found that the largest flow injection, it obtained the largest recovery factors. This parameter controls the speed of the front of the gas injected and determined if the gravitational force dominates or not the process in the recovery of oil. Natural gas had better performance than CO2 and that the presence of aquifer in the reservoir was less influential in the process. In economic analysis found that by injecting natural gas is obtained more economically beneficial than CO2
Resumo:
The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found
Resumo:
The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front
Resumo:
This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd (II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations > 485 mu g L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.
Resumo:
Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 mm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm(2). The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or now injection analysis or even to obtain electrodes as large as 100 cm(2). The low price of commercial recordable CDs allows a one way use. The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.