783 resultados para Fieldwork Learning Framework
Resumo:
The inclusion of General Chemistry (GC) in the curricula of higher education courses in science and technology aims, on the one hand, to develop students' skills necessary for further studies and, on the other hand, to respond to the need of endowing future professionals of knowledge to analyze and solve multidisciplinary problems in a sustainable way. The participation of students in the evaluation of the role played by the GC in their training is crucial, and the analysis of the results can be an essential tool to increase success in the education of students and improving practices in various professions. Undeniably, this work will be focused on the development of an intelligent system to assess the role of GC. The computational framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a problem solving methodology moored on Artificial Neural Networks. The results so far obtained show that the proposed model stands for a good start, being its overall accuracy higher than 95%.
Resumo:
My dissertation emphasizes a cognitive account of multimodality that explicitly integrates experiential knowledge work into the rhetorical pedagogy that informs so many composition and technical communication programs. In these disciplines, multimodality is widely conceived in terms of what Gunther Kress calls “socialsemiotic” modes of communication shaped primarily by culture. In the cognitive and neurolinguistic theories of Vittorio Gallese and George Lakoff, however, multimodality is described as a key characteristic of our bodies’ sensory-motor systems which link perception to action and action to meaning, grounding all communicative acts in knowledge shaped through body-engaged experience. I argue that this “situated” account of cognition – which closely approximates Maurice Merleau-Ponty’s phenomenology of perception, a major framework for my study – has pedagogical precedence in the mimetic pedagogy that informed ancient Sophistic rhetorical training, and I reveal that training’s multimodal dimensions through a phenomenological exegesis of the concept mimesis. Plato’s denigration of the mimetic tradition and his elevation of conceptual contemplation through reason, out of which developed the classic Cartesian separation of mind from body, resulted in a general degradation of experiential knowledge in Western education. But with the recent introduction into college classrooms of digital technologies and multimedia communication tools, renewed emphasis is being placed on the “hands-on” nature of inventive and productive praxis, necessitating a revision of methods of instruction and assessment that have traditionally privileged the acquisition of conceptual over experiential knowledge. The model of multimodality I construct from Merleau-Ponty’s phenomenology, ancient Sophistic rhetorical pedagogy, and current neuroscientific accounts of situated cognition insists on recognizing the significant role knowledges we acquire experientially play in our reading and writing, speaking and listening, discerning and designing practices.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Technology has an important role in children's lives and education. Based on several projects developed with ICT, both in Early Childhood Education (3-6 years old) and Primary Education (6-10 years old), since 1997, the authors argue that research and educational practices need to "go outside", addressing ways to connect technology with outdoor education. The experience with the projects and initiatives developed supported a conceptual framework, developed and discussed with several partners throughout the years and theoretically informed. Three main principles or axis have emerged: strengthening Children's Participation, promoting Critical Citizenship and establishing strong Connections to Pedagogy and Curriculum. In this paper, those axis will be presented and discussed in relation to the challenge posed by Outdoor Education to the way ICT in Early Childhood and Primary Education is understood, promoted and researched. The paper is exploratory, attempting to connect theoretical and conceptual contributions from Early Childhood Pedagogy with contributions from ICT in Education. The research-based knowledge available is still scarce, mostly based on studies developed with other purposes. The paper, therefore, focus the connections and interpellations between concepts established through the theoretical framework and draws on the almost 20 years of experience with large and small scale action-research projects of ICT in schools. The more recent one is already testing the conceptual framework by supporting children in non-formal contexts to explore vineyards and the cycle of wine production with several ICT tools. Approaching Outdoor Education as an arena where pedagogical and cultural dimensions influence decisions and practices, the paper tries to argue that the three axis are relevant in supporting a stronger connection between technology and the outdoor.
Resumo:
Una de las principales dificultades que se presenta en Colombia, para el desarrollo económico y social, está dada por la falta de sostenibilidad de la gran mayoría de empresas en el país. Por este motivo, este trabajo se ha concentrado en investigar este problema y brindar herramientas que ayuden a fomentar una cultura de perdurabilidad. Con este fin, se ha realizado un estudio acerca de Avianca, una empresa referente en el país en lo que respecta a la perdurabilidad, posicionamiento y estrategia, pues, a lo largo de sus casi cien años de historia, ha superado retos y circunstancias, que, de haber actuado de otra manera, habrían podido llevarla a su fin.
Resumo:
The authors present a proposal to develop intelligent assisted living environments for home based healthcare. These environments unite the chronical patient clinical history sematic representation with the ability of monitoring the living conditions and events recurring to a fully managed Semantic Web of Things (SWoT). Several levels of acquired knowledge and the case based reasoning that is possible by knowledge representation of the health-disease history and acquisition of the scientific evidence will deliver, through various voice based natural interfaces, the adequate support systems for disease auto management but prominently by activating the less differentiated caregiver for any specific need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators.
Resumo:
The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.
Resumo:
The inclusion of online elements in learning environments is becoming commonplace in Post Compulsory Education. A variety of research into the value of such elements is available, and this study aims to add further evidence by looking specifically at the use of collaborative technologies such as online discussion forums and wikis to encourage higher order thinking and self-sufficient learning. In particular, the research examines existing pedagogical models including Salmon’s five-stage model, along with other relevant literature. A case study of adult learners in community-based learning centres forms the basis of the research, and as a result of the findings, an arrow model is suggested as a framework for online collaboration that emphasises the learner, mentions pre-course preparation and then includes three main phases of activity: post, interact and critique. This builds on Salmon’s five-stage model and has the benefit of being flexible and responsive, as well as allowing for further development beyond the model, particularly in a blended learning environment.
Resumo:
The proliferation of Web-based learning objects makes finding and evaluating resources a considerable hurdle for learners to overcome. While established learning analytics methods provide feedback that can aid learner evaluation of learning resources, the adequacy and reliability of these methods is questioned. Because engagement with online learning is different from other Web activity, it is important to establish pedagogically relevant measures that can aid the development of distinct, automated analysis systems. Content analysis is often used to examine online discussion in educational settings, but these instruments are rarely compared with each other which leads to uncertainty regarding their validity and reliability. In this study, participation in Massive Open Online Course (MOOC) comment forums was evaluated using four different analytical approaches: the Digital Artefacts for Learning Engagement (DiAL-e) framework, Bloom's Taxonomy, Structure of Observed Learning Outcomes (SOLO) and Community of Inquiry (CoI). Results from this study indicate that different approaches to measuring cognitive activity are closely correlated and are distinct from typical interaction measures. This suggests that computational approaches to pedagogical analysis may provide useful insights into learning processes.
Resumo:
This is the fourth Association for Learning Technology (ALT) Annual Survey. As with previous years, the survey was advertised predominately to ALT Members but at the same time promoted publically, and responses were collected between December 2017 and January 2018. The ALT Annual Survey contains a common core of questions asked in all annual surveys. This year the survey was supplemented with additional questions specifically aimed at gaining feedback for Certified Member of ALT (CMALT) framework and to identify other priorities 2018.
Resumo:
In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.
Resumo:
In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.
Resumo:
In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.
Resumo:
With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.
Resumo:
Reinforcement Learning (RL) provides a powerful framework to address sequential decision-making problems in which the transition dynamics is unknown or too complex to be represented. The RL approach is based on speculating what is the best decision to make given sample estimates obtained from previous interactions, a recipe that led to several breakthroughs in various domains, ranging from game playing to robotics. Despite their success, current RL methods hardly generalize from one task to another, and achieving the kind of generalization obtained through unsupervised pre-training in non-sequential problems seems unthinkable. Unsupervised RL has recently emerged as a way to improve generalization of RL methods. Just as its non-sequential counterpart, the unsupervised RL framework comprises two phases: An unsupervised pre-training phase, in which the agent interacts with the environment without external feedback, and a supervised fine-tuning phase, in which the agent aims to efficiently solve a task in the same environment by exploiting the knowledge acquired during pre-training. In this thesis, we study unsupervised RL via state entropy maximization, in which the agent makes use of the unsupervised interactions to pre-train a policy that maximizes the entropy of its induced state distribution. First, we provide a theoretical characterization of the learning problem by considering a convex RL formulation that subsumes state entropy maximization. Our analysis shows that maximizing the state entropy in finite trials is inherently harder than RL. Then, we study the state entropy maximization problem from an optimization perspective. Especially, we show that the primal formulation of the corresponding optimization problem can be (approximately) addressed through tractable linear programs. Finally, we provide the first practical methodologies for state entropy maximization in complex domains, both when the pre-training takes place in a single environment as well as multiple environments.