909 resultados para Ferromagnetic phasis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have theoretically investigated the energy band structures of two typical magnetic superlattices formed by perpendicular or parallel magnetization ferromagnetic stripes periodically deposited on a two-dimensional electron gas (2DEG), where the magnetic profile in the perpendicular magnetization is of inversion anti-symmetry, but of inversion symmetry in parallel magnetization, respectively. We have shown that the energy bands of perpendicular magnetization display the spin-splitting and transverse wave-vector symmetry, while the energy bands of the parallel magnetization exhibit spin degeneration and transverse wave-vector asymmetry. These distinguishing spin-dependent and transverse wave-vector asymmetry features are essential for future spintronics devices applications. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga, Mn) As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed ( Ga, Mn) As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown ( Ga. Mn) As under the same excitation condition. which shows that DP mechanism is dominant in the spin relaxation process for ( Ga, Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed ( Ga, Mn) As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga, Mn) As.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical model for the spin filtering transport in a ferromagnetic-metal - Al2O3 - n-type semiconductor tunneling structure has been developed, and demonstrated that the ratio of the helicity-modulated photo-response to the chopped one is proportional to the sum of the relative asymmetry in conductance of two opposite spin-polarized tunneling channels and the MCD effect of the ferromagnetic metal film. The performed measurement in an iron-metal/Al2O3/n-type GaAs tunneling structure under the optical spin orientation has verified that all the aspects of the experimental results are very well in accordance with our model in the regime of the spin filtering. After the MCD effect of the iron film is calibrated by an independent measurement, the physical quantity of Delta G(t)/G(t) (Delta G(t) = G(t)(up arrow) - G(t)(down arrow) is the difference of the conductance between two opposite spin tunneling channels, G(t) =( G(t)(up arrow) + G(t)(down arrow))/2 the averaged tunneling conductance), which concerns us most, can be determined quantitatively with a high sensitivity in the framework of our analytical model. Copyright (c) EPLA, 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hole-mediated ferromagnetism in (In,Mn)As quantum dots is investigated using the k center dot p method and the mean field model. It is found that the (In,Mn)As quantum dot can be ferromagnetic at room temperature when there is one hole in the dot. For the spherical quantum dots, the Curie temperature decreases as the diameter increases, and increases as the effective composition of magnetic ions increases. It is interesting to find that the (In,Mn)As oblate quantum dot has highly anisotropic Zeeman splitting and ferromagnetism due to the spin-orbit coupling effect, which can be used as an uniaxial spin amplifier. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic properties of the spin-1/2 diamond quantum Heisenberg chain model have been investigated by means of the transfer matrix renormalization group (TMRG) method. Considering different crystal structures, by changing the interactions among different spins and the external magnetic fields, we first investigate the magnetic susceptibility, magnetization, and specific heat of the distorted diamond chain as a model of ferrimagnetic spin systems. The susceptibility and the specific heat show different features for different ferromagnetic (F) and antiferromagnetic (AF) interactions and different magnetic fields. A 1/3 magnetization plateau is observed at low temperature in a magnetization curve. Then, we discuss the theoretical mechanism of the double-peak structure of the magnetic susceptibility and the three-peak structure of the specific heat of the compound Cu-3(CO3)(2)(OH)(2), on which an elegant measurement was performed by Kikuchi [Phys. Rev. Lett. 94, 227201 (2005)]. Our computed results are consistent with the main characteristics of the experimental data. Meanwhile, we find that the double-peak structure of susceptibility can be found in several different kinds of spin interactions in the diamond chain. Moreover, a three-peak behavior is observed in the TMRG results of magnetic susceptibility. In addition, we perform calculations relevant for some experiments and explain the characteristics of these materials. (c) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO have been investigated using first-principles methods. We show that the magnetic coupling between Gd or Nd ions in the nearest neighbor sites is ferromagnetic. The stability of the ferromagnetic coupling between Gd ions can be enhanced by appropriate electron doping into ZnO Gd system and the room-temperature ferromagnetism can be achieved. However, for ZnO Nd system, the ferromagnetism between Nd ions can be enhanced by appropriate holes doping into the sample. The room-temperature ferromagnetism can also be achieved in the n-conducting ZnO Nd sample. Our calculated results are in good agreement with the conclusions of the recent experiments. The effect of native defects (V-Zn, V-O) on the ferromagnetism is also discussed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3176490]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mn ions have been incorporated into MOCVD grown Al1-x In (x) N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions one has Curie points at similar to 260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T (c) above room temperature is assumed to be associated to the layer having higher Mn concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and magnetic properties of Sm ion-implanted GaN with different Sm concentrations are investigated. XRD results do not show any peaks associated with second phase formation. Magnetic investigations performed by superconducting quantum interference device reveal ferromagnetic behavior with an ordering temperature above room temperature in all the implanted samples, while the effective magnetic moment per Sm obtained from saturation magnetization gives a much higher value than the atomic moment of Sm. These results could be explained by the phenomenological model proposed by Dhar et al. [Phys. Rev. Lett. 94(2005) 037205, Phys. Rev. B 72(2005) 245203] in terms of a long-range spin polarization of the GaN matrix by the Sm atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diluted magnetic nonpolar GaN Mn films have been fabricated by implanting Mn ions into nonpolar aplane (1 1 (2) over bar 0) p-type GaN films and a subsequent rapid thermal annealing process. The ferromagnetism properties of the films were studied by means of superconducting quantum interference device (SQUID). Clearly in-plane magnetic anisotropy characteristics of the sample at 10 K were revealed with the direction of the applied magnetic field rotating along the in-plane [0 0 0 1]-axis. Moreover, obvious ferromagnetic properties of the sample up to 350 K were detected by means of the temperature-dependent SQUID. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferromagnetic properties of Mn-implanted wurtzite AlxIn1-xN/GaN thin films grown by metal organic chemical vapor deposition (MOCVD) were observed using a quantum design superconducting quantum interference device (SQUID) magnetometer. Hysteresis behavior with a reasonably high saturation magnetic moment at room temperature for all the samples was noted, Two optical thresholds were observed at 1.58 and 2.64 eV, which are attributed to internal transition (E-5 -> T-5(2)) of Mn3+ (d(4)) and hole emission from the neutral Mn acceptor level to the valence band respectively. Bound magnetic polaron formation is considered to be the origin of ferromagnetism in our samples. (c) 2009 The Japan Society of Applied Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first-principles electronic structure calculations we find that the titanium vacancy and divacancy may be responsible for the unexpected ferromagnetism in undoped anatase TiO2. An isolated titanium vacancy produces a magnetic moment of 3.5 mu(B), and an isolated titanium divacancy produces a magnetic moment of 2.0 mu(B). The origin of the collective magnetic moments is the holes introduced by the titanium vacancy or divacancy in the narrow nonbonding oxygen 2p(pi) band. At the center of the divacancy, an O-2 dimer forms during the relaxation, which lowers the total energy of the system and leads to the decrease in the total magnetic moment due to a hole compensation mechanism. For both the two native defects, the ferromagnetic state is more stable than the antiferromagnetic state.