894 resultados para Feature mediator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Study examines whether cultural identity has an impact on perceptions of foreign management practices and perceptions of organisational climate. Based on social identity theory as a conceptual framework, it is assumed that the salience of cultural identity leads to in-group bias in interpreting organisational events. This study also examines whether managers' accommodative communication behaviour mediates these relationships. In a multinational organisation, employees see the foreign company as a symbol, and the person that deals with them in everyday working relationships in the organisation is their direct leader. It is argued that the salience of cultural identity wiU depend on employees' perceptions of the way managers attach meaning to foreign managerial practices and communicate it to them. Interaction with managers who create a distance with their employees and who fail to Usten to what employees need may be a socially appropriate way to invoke the salience of cultural identity in the working relationship. The participants were 206 Indonesian employees from three multinational organisations. Using a questionnaire, this study shows that participants with strong cultural identity had more negative perceptions of foreign management practices and organisational climate. Furthermore, this study indicates that managers' accommodative communication behaviour mediated these relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software simulation models are computer programs that need to be verified and debugged like any other software. In previous work, a method for error isolation in simulation models has been proposed. The method relies on a set of feature matrices that can be used to determine which part of the model implementation is responsible for deviations in the output of the model. Currrently these feature matrices have to be generated by hand from the model implementation, which is a tedious and error-prone task. In this paper, a method based on mutation analysis, as well as prototype tool support for the verification of the manually generated feature matrices is presented. The application of the method and tool to a model for wastewater treatment shows that the feature matrices can be verified effectively using a minimal number of mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The software implementation of the emergency shutdown feature in a major radiotherapy system was analyzed, using a directed form of code review based on module dependences. Dependences between modules are labelled by particular assumptions; this allows one to trace through the code, and identify those fragments responsible for critical features. An `assumption tree' is constructed in parallel, showing the assumptions which each module makes about others. The root of the assumption tree is the critical feature of interest, and its leaves represent assumptions which, if not valid, might cause the critical feature to fail. The analysis revealed some unexpected assumptions that motivated improvements to the code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical Bayesian approach for inference in neural network models has been available for ten years, and yet it is not used frequently in medical applications. In this chapter we show how both regularisation and feature selection can bring significant benefits in diagnostic tasks through two case studies: heart arrhythmia classification based on ECG data and the prognosis of lupus. In the first of these, the number of variables was reduced by two thirds without significantly affecting performance, while in the second, only the Bayesian models had an acceptable accuracy. In both tasks, neural networks outperformed other pattern recognition approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data visualization algorithms and feature selection techniques are both widely used in bioinformatics but as distinct analytical approaches. Until now there has been no method of measuring feature saliency while training a data visualization model. We derive a generative topographic mapping (GTM) based data visualization approach which estimates feature saliency simultaneously with the training of the visualization model. The approach not only provides a better projection by modeling irrelevant features with a separate noise model but also gives feature saliency values which help the user to assess the significance of each feature. We compare the quality of projection obtained using the new approach with the projections from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics dataset demonstrate that the proposed approach successfully identifies feature significance and provides coherent (compact) projections. © 2006 IEEE.