853 resultados para Faults detection and location


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic Syndrome (MetS) is a clustering of cardiovascular (CV) risk factors that includes obesity, dyslipidemia, hyperglycemia, and elevated blood pressure. Applying the criteria for MetS can serve as a clinically feasible tool for identifying patients at high risk for CV morbidity and mortality, particularly those who do not fall into traditional risk categories. The objective of this study was to examine the association between MetS and CV mortality among 10,940 American hypertensive adults, ages 30-69 years, participating in a large randomized controlled trial of hypertension treatment (HDFP 1973-1983). MetS was defined as the presence of hypertension and at least two of the following risk factors: obesity, dyslipidemia, or hyperglycemia. Of the 10,763 individuals with sufficient data available for analysis, 33.2% met criteria for MetS at baseline. The baseline prevalence of MetS was significantly higher among women (46%) than men (22%) and among non-blacks (37%) versus blacks (30%). All-cause and CV mortality was assessed for 10,763 individuals. Over a median follow-up of 7.8 years, 1,425 deaths were observed. Approximately 53% of these deaths were attributed to CV causes. Compared to individuals without MetS at baseline, those with MetS had higher rates of all-cause mortality (14.5% v. 12.6%) and CV mortality (8.2% versus 6.4%). The unadjusted risk of CV mortality among those with MetS was 1.31 (95% confidence interval [CI], 1.12-1.52) times that for those without MetS at baseline. After multiple adjustment for traditional risk factors of age, race, gender, history of cardiovascular disease (CVD), and smoking status, individuals with MetS, compared to those without MetS, were 1.42 (95% CI, 1.20-1.67) times more likely to die of CV causes. Of the individual components of MetS, hyperglycemia/diabetes conferred the strongest risk of CV mortality (OR 1.73; 95% CI, 1.39-2.15). Results of the present study suggest MetS defined as the presence of hypertension and 2 additional cardiometabolic risk factors (obesity, dyslipidemia, or hyperglycemia/diabetes) can be used with some success to predict CV mortality in middle-aged hypertensive adults. Ongoing and future prospective studies are vital to examine the association between MetS and cardiovascular morbidity and mortality in select high-risk subpopulations, and to continue evaluating the public health impact of aggressive, targeted screening, prevention, and treatment efforts to prevent future cardiovascular disability and death.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between serum cholesterol and cancer incidence was investigated in the population of the Hypertension Detection and Follow-up Program (HDFP). The HDFP was a multi-center trial designed to test the effectiveness of a stepped program of medication in reducing mortality associated with hypertension. Over 10,000 participants, ages 30-69, were followed with clinic and home visits for a minimum of five years. Cancer incidence was ascertained from existing study documents, which included hospitalization records, autopsy reports and death certificates. During the five years of follow-up, 286 new cancer cases were documented. The distribution of sites and total number of cases were similar to those predicted using rates from the Third National Cancer Survey. A non-fasting baseline serum cholesterol level was available for most participants. Age, sex, and race specific five-year cancer incidence rates were computed for each cholesterol quartile. Rates were also computed by smoking status, education status, and percent ideal weight quartiles. In addition, these and other factors were investigated with the use of the multiple logistic model.^ For all cancers combined, a significant inverse relationship existed between baseline serum cholesterol levels and cancer incidence. Previously documented associations between smoking, education and cancer were also demonstrated but did not account for the relationship between serum cholesterol and cancer. The relationship was more evident in males than females but this was felt to represent the different distribution of occurrence of specific cancer sites in the two sexes. The inverse relationship existed for all specific sites investigated (except breast) although a level of statistical significance was reached only for prostate carcinoma. Analyses after exclusion of cases diagnosed during the first two years of follow-up still yielded an inverse relationship. Life table analysis indicated that competing risks during the period of follow-up did not account for the existence of an inverse relationship. It is concluded that a weak inverse relationship does exist between serum cholesterol for many but not all cancer sites. This relationship is not due to confounding by other known cancer risk factors, competing risks or persons entering the study with undiagnosed cancer. Not enough information is available at the present time to determine whether this relationship is causal and further research is suggested. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between degree of diastolic blood pressure (DBP) reduction and mortality was examined among hypertensives, ages 30-69, in the Hypertension Detection and Follow-up Program (HDFP). The HDFP was a multi-center community-based trial, which followed 10,940 hypertensive participants for five years. One-year survival was required for inclusion in this investigation since the one-year annual visit was the first occasion where change in blood pressure could be measured on all participants. During the subsequent four years of follow-up on 10,052 participants, 568 deaths occurred. For levels of change in DBP and for categories of variables related to mortality, the crude mortality rate was calculated. Time-dependent life tables were also calculated so as to utilize available blood pressure data over time. In addition, the Cox life table regression model, extended to take into account both time-constant and time-dependent covariates, was used to examine the relationship change in blood pressure over time and mortality.^ The results of the time-dependent life table and time-dependent Cox life table regression analyses supported the existence of a quadratic function which modeled the relationship between DBP reduction and mortality, even after adjusting for other risk factors. The minimum mortality hazard ratio, based on a particular model, occurred at a DBP reduction of 22.6 mm Hg (standard error = 10.6) in the whole population and 8.5 mm Hg (standard error = 4.6) in the baseline DBP stratum 90-104. After this reduction, there was a small increase in the risk of death. There was not evidence of the quadratic function after fitting the same model using systolic blood pressure. Methodologic issues involved in studying a particular degree of blood pressure reduction were considered. The confidence interval around the change corresponding to the minimum hazard ratio was wide and the obtained blood pressure level should not be interpreted as a goal for treatment. Blood pressure reduction was attributed, not only to pharmacologic therapy, but also to regression to the mean, and to other unknown factors unrelated to treatment. Therefore, the surprising results of this study do not provide direct implications for treatment, but strongly suggest replication in other populations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drift of 52 icebergs tagged with GPS buoys in the Weddell Sea since 1999 has been investigated with respect to prevalent drift tracks, sea ice/iceberg interaction, and freshwater fluxes. Buoys were deployed on small- to medium-sized icebergs (edge lengths ? 5 km) in the southwestern and eastern Weddell Sea. The basin-scale iceberg drift of this size class was established. In the western Weddell Sea, icebergs followed a northward course with little deviation and mean daily drift rates up to 9.5 ± 7.3 km/d. To the west of 40°W the drift of iceberg and sea ice was coherent. In the highly consolidated perennial sea ice cover of 95% the sea ice exerted a steering influence on the icebergs and was thus responsible for the coherence of the drift tracks. The northward drift of buoys to the east of 40°W was interrupted by large deviations due to the passage of low-pressure systems. Mean daily drift rates in this area were 11.5 ± 7.2 km/d. A lower threshold of 86% sea ice concentration for coherent sea ice/iceberg movement was determined by examining the sea ice concentration derived from Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) satellite data. The length scale of coherent movement was estimated to be at least 200 km, about half the value found for the Arctic Ocean but twice as large as previously suggested. The freshwater fluxes estimated from three iceberg export scenarios deduced from the iceberg drift pattern were highly variable. Assuming a transit time in the Weddell Sea of 1 year, the iceberg meltwater input of 31 Gt which is about a third of the basal meltwater input from the Filchner Ronne Ice Shelf but spreads across the entire Weddell Sea. Iceberg meltwater export of 14.2 × 103 m3 s?1, if all icebergs are exported, is in the lower range of freshwater export by sea ice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suporting Information 1; Herbarium Corallina officinalis samples of the Natural History Museum (BM) analysed for the present study. Where the same NHM barcodes are provided for more than one sample, multiple samples were present under the same barcode in the herbarium. (-) indicates samples were not barcoded in the NHM (BM) system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the orbiter of the Rosetta spacecraft, the Cometary Secondary Ion Mass Analyser (COSIMA) will provide new in situ insights about the chemical composition of cometary grains all along 67P/Churyumov–Gerasimenko (67P/CG) journey until the end of December 2015 nominally. The aim of this paper is to present the pre-calibration which has already been performed as well as the different methods which have been developed in order to facilitate the interpretation of the COSIMA mass spectra and more especially of their organic content. The first step was to establish a mass spectra library in positive and negative ion mode of targeted molecules and to determine the specific features of each compound and chemical family analyzed. As the exact nature of the refractory cometary organic matter is nowadays unknown, this library is obviously not exhaustive. Therefore this library has also been the starting point for the research of indicators, which enable to highlight the presence of compounds containing specific atom or structure. These indicators correspond to the intensity ratio of specific peaks in the mass spectrum. They have allowed us to identify sample containing nitrogen atom, aliphatic chains or those containing polyaromatic hydrocarbons. From these indicators, a preliminary calibration line, from which the N/C ratio could be derived, has also been established. The research of specific mass difference could also be helpful to identify peaks related to quasi-molecular ions in an unknown mass spectrum. The Bayesian Positive Source Separation (BPSS) technique will also be very helpful for data analysis. This work is the starting point for the analysis of the cometary refractory organic matter. Nevertheless, calibration work will continue in order to reach the best possible interpretation of the COSIMA observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to classify and detect intraretinal hemorrhage (IRH) in spectral domain optical coherence tomography (SD-OCT). METHODS Initially the presentation of IRH in BRVO-patients in SD-OCT was described by one reader comparing color-fundus (CF) and SD-OCT using dedicated software. Based on these established characteristics, the presence and the severity of IRH in SD-OCT and CF were assessed by two other masked readers and the inter-device and the inter-observer agreement were evaluated. Further the area of IRH was compared. RESULTS About 895 single B-scans of 24 eyes were analyzed. About 61% of SD-OCT scans and 46% of the CF-images were graded for the presence of IRH (concordance: 73%, inter-device agreement: k = 0.5). However, subdivided into previously established severity levels of dense (CF: 21.3% versus SD-OCT: 34.7%, k = 0.2), flame-like (CF: 15.5% versus SD-OCT: 45.5%, k = 0.3), and dot-like (CF: 32% versus SD-OCT: 24.4%, k = 0.2) IRH, the inter-device agreement was weak. The inter-observer agreement was strong with k = 0.9 for SD-OCT and k = 0.8 for CF. The mean area of IRH detected on SD-OCT was significantly greater than on CF (SD-OCT: 11.5 ± 4.3 mm(2) versus CF: 8.1 ± 5.5 mm(2), p = 0.008). CONCLUSIONS IRH seems to be detectable on SD-OCT; however, the previously established severity grading agreed weakly with that assessed by CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a new method for the automatic detection and tracking of road traffic signs using an on-board single camera. This method aims to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. The proposed approach exploits a combination of different features, such as color, appearance, and tracking information. This information is introduced into a recursive Bayesian decision framework, in which prior probabilities are dynamically adapted to tracking results. This decision scheme obtains a number of candidate regions in the image, according to their HS (Hue-Saturation). Finally, a Kalman filter with an adaptive noise tuning provides the required time and spatial coherence to the estimates. Results have shown that the proposed method achieves high detection rates in challenging scenarios, including illumination changes, rapid motion and significant perspective distortion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasonic transducers have often been used in the development of sensory systems for robotics applications. In most cases, these sensory systems are based on the determination of times of flight for signals from every transducer. In this work we have used piezoresistive and piezoelectric materials to measure the instant and position collision in metallic structures by using the difference of the times of propagation of an acoustic wave when it is produced over a ferromagnetic (iron, steel or another material) based structure. An immediate application of the proposed method is the detection and location of impacts over the metallic links of an industrial robot or the collision position in a metallic structure for an automated inspection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.