825 resultados para Fault Tolerance
Resumo:
A total of sixteen bacterial species were isolated from mangrove soils of Karachi, Pakistan. Twelve of the isolates were gram positive while four were gram negative. All sixteen species showed resistance to high concentration of streptomycin, however, resistance to chloramphenicol and tetracycline was variable. The isolates tolerated up to 110‰ salinity and accumulated sodium form the media.
Resumo:
Bayesian formulated neural networks are implemented using hybrid Monte Carlo method for probabilistic fault identification in cylindrical shells. Each of the 20 nominally identical cylindrical shells is divided into three substructures. Holes of (12±2) mm in diameter are introduced in each of the substructures and vibration data are measured. Modal properties and the Coordinate Modal Assurance Criterion (COMAC) are utilized to train the two modal-property-neural-networks. These COMAC are calculated by taking the natural-frequency-vector to be an additional mode. Modal energies are calculated by determining the integrals of the real and imaginary components of the frequency response functions over bandwidths of 12% of the natural frequencies. The modal energies and the Coordinate Modal Energy Assurance Criterion (COMEAC) are used to train the two frequency-response-function-neural-networks. The averages of the two sets of trained-networks (COMAC and COMEAC as well as modal properties and modal energies) form two committees of networks. The COMEAC and the COMAC are found to be better identification data than using modal properties and modal energies directly. The committee approach is observed to give lower standard deviations than the individual methods. The main advantage of the Bayesian formulation is that it gives identities of damage and their respective confidence intervals.
Resumo:
The architecture of model predictive control (MPC), with its explicit internal model and constrained optimization is presented. Since MPC relies on an explicit internal model, one can imagine dealing with failures by updating the internal model, and letting the on-line optimizer work out how to control the system in its new condition. This aspects rely on assumptions such that the nature of the fault can be located, and the model can be updated automatically. A standard form of MPC, with linear inequality constraints on inputs and outputs, linear internal model, and quadriatic cost function.
Resumo:
The various aspects of fault-tolerant control systems that have the ability to survive major equipment failures or damages are discussed. Model predictive control (MPC) offers a promising basis for fault-tolerant control. Failures can be dealt with by updating internal models and letting the on-line optimizer control the system in its new condition. Fault detection and isolation (FDI) and the management of complex models are two emerging technologies in this field.