980 resultados para Fatique calculations
Resumo:
Hydrogen assisted subcritical cleavage of the ferrite matrix occurs during fatigue of a duplex stainless steel in gaseous hydrogen. The ferrite fails by a cyclic cleavage mechanism and fatigue crack growth rates are independent of frequency between 0.1 and 5 Hz. Macroscopic crack growth rates are controlled by the fraction of ferrite grains cleaving along the crack front, which can be related to the maximum stress intensity, Kmax. A superposition model is developed to predict simultaneously the effects of stress intensity range (ΔK) and K ratio (Kmin/Kmax). The effect of Kmax is rationalised by a local cleavage criterion which requires a critical tensile stress, normal to the {001} cleavage plane, acting over a critical distance within an embrittled zone at the crack tip. © 1991.
Resumo:
The method for the computation of the conditional probability density function for the nonlinear Schrödinger equation with additive noise is developed. We present in a constructive form the conditional probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case. The general theory results are illustrated using fiber-optic communications as a particular, albeit practically very important, example.
Resumo:
AMS Subj. Classification: 00-02, (General)
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.
Resumo:
Electromagnetic design of a 1.12-MW, 18 000-r/min high-speed permanent-magnet motor (HSPMM) is carried out based on the analysis of pole number, stator slot number, rotor outer diameter, air-gap length, permanent magnet material, thickness, and pole arc. The no-load and full-load performance of the HSPMM is investigated in this paper by using 2-D finite element method (FEM). In addition, the power losses in the HSPMM including core loss, winding loss, rotor eddy current loss, and air friction loss are predicted. Based on the analysis, a prototype motor is manufactured and experimentally tested to verify the machine design.
Resumo:
Lutein is a principal constituent of the human macular pigment. This study is composed of two projects. The first studies the conformational geometries of lutein and its potential adaptability in biological systems. The second is a study of the response of human subjects to lutein supplements. Using semi-empirical parametric method 3 (PM3) and density functional theory with the B3LYP/6-31G* basis set, the relative energies of s- cis conformers of lutein were determined. All 512 s-cis conformers were calculated with PM3. A smaller, representative group was also studied using density functional theory. PM3 results were correlated systematically to B3LYP values and this enables the results to be calibrated. The relative energies of the conformers range from 1-30 kcal/mole, and many are dynamically accessible at normal temperatures. Four commercial formulations containing lutein were studied. The serum and macular pigment (MP) responses of human subjects to these lutein supplements with doses of 9 or 20 mg/day were measured, relative to a placebo, over a six month period. In each instance, lutein levels in serum increased and correlated with MP increases. The results demonstrate that responses are significantly dependent upon formulation and that components other than lutein have an important influence serum response.
Resumo:
Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning including minimal invasive surgery, targeted drug delivery, and tumor resection. Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are essential for the determination of the tumor to normal liver ratio and for the calculation of the dose of Y-90 microspheres that will result in high concentration of the radiation in the tumor region as compared to nearby healthy tissue. Present manual techniques for segmentation of the liver from Computed Tomography (CT) tend to be tedious and greatly dependent on the skill of the technician/doctor performing the task. ^ This dissertation presents the development and implementation of a fully integrated algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as designed requires minimal human intervention without compromising the accuracy of the segmentation results. Embedded within this algorithm is an effective method for extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate treatment. ^ Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes in 20 datasets in comparison to the manual gold standard volumes. In a similar comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated the effectiveness of the algorithm in extracting and rendering the vasculature structure of the liver. Results of the parallel computing process, using a single workstation, showed a 78% gain. Also, statistical analysis carried out to determine if the manual initialization has any impact on the accuracy showed user initialization independence in the results. ^ The dissertation thus provides a complete 3-D solution towards liver cancer treatment planning with the opportunity to extract, visualize and quantify the needed statistics for liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and tumor volumes, this new method provides an effective and computationally efficient process required of such challenging clinical requirements.^
Resumo:
The present study measures the increase in serum carotenoid concentration in 30 healthy individuals after supplementation with a low dose xanthophyll ester (3 and 6 mg of lutein equivalent/per day) when compared to a placebo. Serum levels of carotenoids were measured using HPLC and showed an increase in the concentration of lutein, zeaxanthin and four lutein metabolites proportional to dose. In order to further assess the importance of the end-group structure in carotenoids we have investigated the influence of the end-group type and functionality on the conformational energy barrier. We used the density functional method implemented on GAUSSIAN 98 to calculate the conformational energy curves for rotation of the P-ring or the E-ring relative to short polyene chains around the C6-C7 single bond. A large barrier is observed for the interconversion of conformers in the E-rings (8 kcal/mol) when compared to beta rings (2.3-3 kcal/mol).
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Free energy calculations are a computational method for determining thermodynamic quantities, such as free energies of binding, via simulation.
Currently, due to computational and algorithmic limitations, free energy calculations are limited in scope.
In this work, we propose two methods for improving the efficiency of free energy calculations.
First, we expand the state space of alchemical intermediates, and show that this expansion enables us to calculate free energies along lower variance paths.
We use Q-learning, a reinforcement learning technique, to discover and optimize paths at low computational cost.
Second, we reduce the cost of sampling along a given path by using sequential Monte Carlo samplers.
We develop a new free energy estimator, pCrooks (pairwise Crooks), a variant on the Crooks fluctuation theorem (CFT), which enables decomposition of the variance of the free energy estimate for discrete paths, while retaining beneficial characteristics of CFT.
Combining these two advancements, we show that for some test models, optimal expanded-space paths have a nearly 80% reduction in variance relative to the standard path.
Additionally, our free energy estimator converges at a more consistent rate and on average 1.8 times faster when we enable path searching, even when the cost of path discovery and refinement is considered.